BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 27990809)

  • 21. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction.
    Park JE; Jang YJ; Kim YJ; Song MS; Yoon S; Kim DH; Kim SJ
    Phys Chem Chem Phys; 2014 Jan; 16(1):103-9. PubMed ID: 24220278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst.
    Yang J; Zhou W; Cheng CH; Lee JY; Liu Z
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):119-26. PubMed ID: 20356228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts.
    Li Q; Pan H; Higgins D; Cao R; Zhang G; Lv H; Wu K; Cho J; Wu G
    Small; 2015 Mar; 11(12):1443-52. PubMed ID: 25400088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molybdenum Doping Augments Platinum-Copper Oxygen Reduction Electrocatalyst.
    Luo Y; Kirchhoff B; Fantauzzi D; Calvillo L; Estudillo-Wong LA; Granozzi G; Jacob T; Alonso-Vante N
    ChemSusChem; 2018 Jan; 11(1):193-201. PubMed ID: 29112796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient-Concentration Design of Stable Core-Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis.
    Lyu X; Jia Y; Mao X; Li D; Li G; Zhuang L; Wang X; Yang D; Wang Q; Du A; Yao X
    Adv Mater; 2020 Aug; 32(32):e2003493. PubMed ID: 32596981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-Step Conversion from Core-Shell Metal-Organic Framework Materials to Cobalt and Nitrogen Codoped Carbon Nanopolyhedra with Hierarchically Porous Structure for Highly Efficient Oxygen Reduction.
    Hu Z; Zhang Z; Li Z; Dou M; Wang F
    ACS Appl Mater Interfaces; 2017 May; 9(19):16109-16116. PubMed ID: 28452486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Affinity-Assisted Nanoscale Alloys as Remarkable Bifunctional Catalyst for Alcohol Oxidation and Oxygen Reduction Reactions.
    Tiwari JN; Lee WG; Sultan S; Yousuf M; Harzandi AM; Vij V; Kim KS
    ACS Nano; 2017 Aug; 11(8):7729-7735. PubMed ID: 28712290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction.
    Xiao J; Chen C; Xi J; Xu Y; Xiao F; Wang S; Yang S
    Nanoscale; 2015 Apr; 7(16):7056-64. PubMed ID: 25465620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance.
    Kang SW; Lee YW; Park Y; Choi BS; Hong JW; Park KH; Han SW
    ACS Nano; 2013 Sep; 7(9):7945-55. PubMed ID: 23915173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc-air batteries.
    Cheng Y; Wu H; Han J; Zhong S; Huang S; Chu S; Song S; Reddy KM; Wang X; Wu S; Zhuang X; Johnson I; Liu P; Chen M
    Nanoscale; 2021 Jun; 13(24):10862-10870. PubMed ID: 34114571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metallic Two-Dimensional Nanoframes: Unsupported Hierarchical Nickel-Platinum Alloy Nanoarchitectures with Enhanced Electrochemical Oxygen Reduction Activity and Stability.
    Godínez-Salomón F; Mendoza-Cruz R; Arellano-Jimenez MJ; Jose-Yacaman M; Rhodes CP
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18660-18674. PubMed ID: 28497954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.
    Jackson A; Strickler A; Higgins D; Jaramillo TF
    Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29329264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced Pt-Based Core-Shell Electrocatalysts for Fuel Cell Cathodes.
    Zhao X; Sasaki K
    Acc Chem Res; 2022 May; 55(9):1226-1236. PubMed ID: 35451817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesoporous layered spinel zinc manganese oxide nanocrystals stabilized nitrogen-doped graphene as an effective catalyst for oxygen reduction reaction.
    Gautam J; Tran DT; Kim NH; Lee JH
    J Colloid Interface Sci; 2019 Jun; 545():43-53. PubMed ID: 30870729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafine Core@Shell Cu
    Luo L; Fu C; Guo Y; Cai X; Luo X; Tan Z; Xue R; Cheng X; Shen S; Zhang J
    ACS Nano; 2023 Feb; 17(3):2992-3006. PubMed ID: 36706226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with Fe
    Yang J; Hu J; Weng M; Tan R; Tian L; Yang J; Amine J; Zheng J; Chen H; Pan F
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4587-4596. PubMed ID: 28098443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning nanoparticle catalysis for the oxygen reduction reaction.
    Guo S; Zhang S; Sun S
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8526-44. PubMed ID: 23775769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction.
    Xu J; Lu S; Chen X; Wang J; Zhang B; Zhang X; Xiao C; Ding S
    Nanotechnology; 2017 Dec; 28(48):485701. PubMed ID: 29039353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting the oxygen reduction activity of a nano-graphene catalyst by charge redistribution at the graphene-metal interface.
    Sung H; Sharma M; Jang J; Lee SY; Choi MG; Lee K; Jung N
    Nanoscale; 2019 Mar; 11(11):5038-5047. PubMed ID: 30839982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.