These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27990817)

  • 1. Applications of Systematic Molecular Scaffold Enumeration to Enrich Structure-Activity Relationship Information.
    Mok NY; Brown N
    J Chem Inf Model; 2017 Jan; 57(1):27-35. PubMed ID: 27990817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target family-directed exploration of scaffolds with different SAR profiles.
    Hu Y; Bajorath J
    J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AutoDesigner - Core Design, a De Novo Design Algorithm for Chemical Scaffolds: Application to the Design and Synthesis of Novel Selective Wee1 Inhibitors.
    Bos PH; Ranalli F; Flood E; Watts S; Inoyama D; Knight JL; Clark AJ; Placzeck A; Wang J; Gerasyuto AI; Silvergleid S; Yin W; Sun S; Abel R; Bhat S
    J Chem Inf Model; 2024 Oct; 64(19):7513-7524. PubMed ID: 39360587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forging New Scaffolds from Old: Combining Scaffold Hopping and Hierarchical Virtual Screening for Identifying Novel Bcl-2 Inhibitors.
    Kanakaveti V; Rathinasamy S; Rayala SK; Gromiha M
    Curr Top Med Chem; 2019; 19(13):1162-1172. PubMed ID: 31210110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-aware clustering of high throughput screening data and elucidation of orthogonal structure-activity relationships.
    Lounkine E; Nigsch F; Jenkins JL; Glick M
    J Chem Inf Model; 2011 Dec; 51(12):3158-68. PubMed ID: 22098146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a method to consistently quantify the structural distance between scaffolds and to assess scaffold hopping potential.
    Li R; Stumpfe D; Vogt M; Geppert H; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2507-14. PubMed ID: 21955025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On scaffolds and hopping in medicinal chemistry.
    Brown N; Jacoby E
    Mini Rev Med Chem; 2006 Nov; 6(11):1217-29. PubMed ID: 17100633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining for bioactive scaffolds with scaffold networks: improved compound set enrichment from primary screening data.
    Varin T; Schuffenhauer A; Ertl P; Renner S
    J Chem Inf Model; 2011 Jul; 51(7):1528-38. PubMed ID: 21615076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix-based Molecular Descriptors for Prospective Virtual Compound Screening.
    Grisoni F; Reker D; Schneider P; Friedrich L; Consonni V; Todeschini R; Koeberle A; Werz O; Schneider G
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27650559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting cancer using scaffold-hopping approaches: illuminating SAR to improve drug design.
    Shivani ; Abdul Rahaman TA; Chaudhary S
    Drug Discov Today; 2024 Sep; 29(9):104115. PubMed ID: 39067613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold diversity of exemplified medicinal chemistry space.
    Langdon SR; Brown N; Blagg J
    J Chem Inf Model; 2011 Sep; 51(9):2174-85. PubMed ID: 21877753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual screening and scaffold hopping based on GRID molecular interaction fields.
    Ahlström MM; Ridderström M; Luthman K; Zamora I
    J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from the data: mining of large high-throughput screening databases.
    Yan SF; King FJ; He Y; Caldwell JS; Zhou Y
    J Chem Inf Model; 2006; 46(6):2381-95. PubMed ID: 17125181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.
    Hu Y; Stumpfe D; Bajorath J
    J Med Chem; 2016 May; 59(9):4062-76. PubMed ID: 26840095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective.
    Zhao H
    Drug Discov Today; 2007 Feb; 12(3-4):149-55. PubMed ID: 17275735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of 2-oxopiperazine dengue inhibitors by scaffold morphing of a phenotypic high-throughput screening hit.
    Kounde CS; Yeo HQ; Wang QY; Wan KF; Dong H; Karuna R; Dix I; Wagner T; Zou B; Simon O; Bonamy GMC; Yeung BKS; Yokokawa F
    Bioorg Med Chem Lett; 2017 Mar; 27(6):1385-1389. PubMed ID: 28216045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel approach of fragment-based lead discovery applied to renin inhibitors.
    Tawada M; Suzuki S; Imaeda Y; Oki H; Snell G; Behnke CA; Kondo M; Tarui N; Tanaka T; Kuroita T; Tomimoto M
    Bioorg Med Chem; 2016 Nov; 24(22):6066-6074. PubMed ID: 27720325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel statistical approach for primary high-throughput screening hit selection.
    Yan SF; Asatryan H; Li J; Zhou Y
    J Chem Inf Model; 2005; 45(6):1784-90. PubMed ID: 16309285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General purpose interactive physico-chemical property exploration.
    Smellie A
    J Chem Inf Model; 2007; 47(3):1182-7. PubMed ID: 17487961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.