BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27991456)

  • 1. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy.
    Li Y; Tian Z; Song T; Wu Z; Liu Y; Jiang S; Jia X
    Phys Med Biol; 2017 Jan; 62(1):289-305. PubMed ID: 27991456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOQUI: an open-source GPU-based Monte Carlo code for proton dose calculation with efficient data structure.
    Lee H; Shin J; Verburg JM; Bobić M; Winey B; Schuemann J; Paganetti H
    Phys Med Biol; 2022 Aug; 67(17):. PubMed ID: 35926482
    [No Abstract]   [Full Text] [Related]  

  • 3. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy.
    Feng H; Holmes JM; Vora SA; Stoker JB; Bues M; Wong WW; Sio TS; Foote RL; Patel SH; Shen J; Liu W
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 37944480
    [No Abstract]   [Full Text] [Related]  

  • 4. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy.
    Qin N; Pinto M; Tian Z; Dedes G; Pompos A; Jiang SB; Parodi K; Jia X
    Phys Med Biol; 2017 May; 62(9):3682-3699. PubMed ID: 28140352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation.
    Shan J; Feng H; Morales DH; Patel SH; Wong WW; Fatyga M; Bues M; Schild SE; Foote RL; Liu W
    Med Phys; 2022 Oct; 49(10):6666-6683. PubMed ID: 35960865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
    Zhou B; Yu CX; Chen DZ; Hu XS
    Med Phys; 2010 Nov; 37(11):5593-603. PubMed ID: 21158271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical note: Beamlet-free optimization for Monte-Carlo-based treatment planning in proton therapy.
    Pross D; Wuyckens S; Deffet S; Sterpin E; Lee JA; Souris K
    Med Phys; 2024 Jan; 51(1):485-493. PubMed ID: 37942953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment planning of scanned proton beams in RayStation.
    Janson M; Glimelius L; Fredriksson A; Traneus E; Engwall E
    Med Dosim; 2024 Spring; 49(1):2-12. PubMed ID: 37996354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A GPU-based fast Monte Carlo code that supports proton transport in magnetic field for radiation therapy.
    Li S; Cheng B; Wang Y; Pei X; Xu XG
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14208. PubMed ID: 37987549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning based linear energy transfer calculation for proton therapy.
    Tang X; Wan Chan Tseung H; Moseley D; Zverovitch A; Hughes CO; George J; Johnson JE; Breen WG; Qian J
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38714191
    [No Abstract]   [Full Text] [Related]  

  • 11. A linear energy transfer distributions computation method for inhomogeneous medium by using the water equivalent ratio approximation.
    Yan N; Wu C; Zhou Y; Liao W; Liu J; Pu Y
    Radiat Prot Dosimetry; 2024 Mar; 200(4):325-332. PubMed ID: 37850312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards real-time photon Monte Carlo dose calculation in the cloud.
    Ziegenhein P; Kozin IN; Kamerling CP; Oelfke U
    Phys Med Biol; 2017 Jun; 62(11):4375-4389. PubMed ID: 28141583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commissioning dose computation model for proton source in pencil beam scanning therapy by convolution neural networks.
    Liu Y; Shang X; Zhao W; Li N; Qu B; Zou Y; Le X; Zhang G; Xu S
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37406635
    [No Abstract]   [Full Text] [Related]  

  • 14. A robust intensity modulated proton therapy optimizer based on Monte Carlo dose calculation.
    Ma J; Wan Chan Tseung HS; Herman MG; Beltran C
    Med Phys; 2018 Jul; ():. PubMed ID: 30019423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Proton Beam Dosimetry Part I: review and performance evaluation of dose calculation algorithms.
    Saini J; Traneus E; Maes D; Regmi R; Bowen SR; Bloch C; Wong T
    Transl Lung Cancer Res; 2018 Apr; 7(2):171-179. PubMed ID: 29876316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient and sensitive patient-specific quality assurance for spot-scanned proton therapy.
    Johnson JE; Beltran C; Wan Chan Tseung H; Mundy DW; Kruse JJ; Whitaker TJ; Herman MG; Furutani KM
    PLoS One; 2019; 14(2):e0212412. PubMed ID: 30763390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DICOM-RT Ion interface to utilize MC simulations in routine clinical workflow for proton pencil beam radiotherapy.
    Shin J; Kooy HM; Paganetti H; Clasie B
    Phys Med; 2020 Jun; 74():1-10. PubMed ID: 32388464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global optimization for spot-based treatment planning.
    Chen M; Gu X; Lu W
    Med Phys; 2022 Dec; 49(12):7648-7660. PubMed ID: 35946601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast analytical dose calculation approach for MRI-guided proton therapy.
    Duetschler A; Winterhalter C; Meier G; Safai S; Weber DC; Lomax AJ; Zhang Y
    Phys Med Biol; 2023 Sep; 68(19):. PubMed ID: 37750045
    [No Abstract]   [Full Text] [Related]  

  • 20. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy.
    Feng H; Holmes JM; Vora SA; Stoker JB; Bues M; Wong WW; Sio TS; Foote RL; Patel SH; Shen J; Liu W
    ArXiv; 2023 Jul; ():. PubMed ID: 37461414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.