These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27991515)

  • 41. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence.
    Zhou Z
    Naturwissenschaften; 2004 Oct; 91(10):455-71. PubMed ID: 15365634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dental Disparity and Ecological Stability in Bird-like Dinosaurs prior to the End-Cretaceous Mass Extinction.
    Larson DW; Brown CM; Evans DC
    Curr Biol; 2016 May; 26(10):1325-33. PubMed ID: 27112293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.
    Pan Y; Zheng W; Moyer AE; O'Connor JK; Wang M; Zheng X; Wang X; Schroeter ER; Zhou Z; Schweitzer MH
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7900-E7907. PubMed ID: 27872291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An integrative approach to understanding bird origins.
    Xu X; Zhou Z; Dudley R; Mackem S; Chuong CM; Erickson GM; Varricchio DJ
    Science; 2014 Dec; 346(6215):1253293. PubMed ID: 25504729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The evolution of endothermy in terrestrial vertebrates: Who? When? Why?
    Hillenius WJ; Ruben JA
    Physiol Biochem Zool; 2004; 77(6):1019-42. PubMed ID: 15674773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds.
    Huang J; Wang X; Hu Y; Liu J; Peteya JA; Clarke JA
    PeerJ; 2016; 4():e1765. PubMed ID: 27019777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Palaeontology: leg feathers in an Early Cretaceous bird.
    Zhang F; Zhou Z
    Nature; 2004 Oct; 431(7011):925. PubMed ID: 15496911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.
    Slack KE; Jones CM; Ando T; Harrison GL; Fordyce RE; Arnason U; Penny D
    Mol Biol Evol; 2006 Jun; 23(6):1144-55. PubMed ID: 16533822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An exceptionally preserved Lower Cretaceous ecosystem.
    Zhou Z; Barrett PM; Hilton J
    Nature; 2003 Feb; 421(6925):807-14. PubMed ID: 12594504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Laurasian origin for a pantropical bird radiation is supported by genomic and fossil data (Aves: Coraciiformes).
    McCullough JM; Moyle RG; Smith BT; Andersen MJ
    Proc Biol Sci; 2019 Sep; 286(1910):20190122. PubMed ID: 31506056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gastroliths in Yanornis: an indication of the earliest radical diet-switching and gizzard plasticity in the lineage leading to living birds?
    Zhou Z; Clarke J; Zhang F; Wings O
    Naturwissenschaften; 2004 Dec; 91(12):571-4. PubMed ID: 15452699
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hypothesis of homeothermy evolution on isolated South China Craton that moved from equator to cold north latitudes 250-200Myr ago.
    Kurbel S
    J Theor Biol; 2014 Jan; 340():232-7. PubMed ID: 24080235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reanalysis of Wupus agilis (Early Cretaceous) of Chongqing, China as a Large Avian Trace: Differentiating between Large Bird and Small Non-Avian Theropod Tracks.
    Xing L; Buckley LG; McCrea RT; Lockley MG; Zhang J; Piñuela L; Klein H; Wang F
    PLoS One; 2015; 10(5):e0124039. PubMed ID: 25993285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.
    Navalón G; Marugán-Lobón J; Chiappe LM; Luis Sanz J; Buscalioni ÁD
    Sci Rep; 2015 Oct; 5():14864. PubMed ID: 26440221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Definitive fossil evidence for the extant avian radiation in the Cretaceous.
    Clarke JA; Tambussi CP; Noriega JI; Erickson GM; Ketcham RA
    Nature; 2005 Jan; 433(7023):305-8. PubMed ID: 15662422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Locomotory abilities and habitat of the Cretaceous bird Gansus yumenensis inferred from limb length proportions.
    Nudds RL; Atterholt J; Wang X; You HL; Dyke GJ
    J Evol Biol; 2013 Jan; 26(1):150-4. PubMed ID: 23194019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Body size evolution in Mesozoic birds.
    Hone DW; Dyke GJ; Haden M; Benton MJ
    J Evol Biol; 2008 Mar; 21(2):618-24. PubMed ID: 18194232
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction.
    Ksepka DT; Stidham TA; Williamson TE
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):8047-8052. PubMed ID: 28696285
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Early Adaptive Radiation of Birds: Evidence from Fossils from Northeastern China.
    Hou L; Martin LD; Zhou Z; Feduccia A
    Science; 1996 Nov; 274(5290):1164-7. PubMed ID: 8895459
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications.
    Eggermont H; Heiri O
    Biol Rev Camb Philos Soc; 2012 May; 87(2):430-56. PubMed ID: 22032243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.