These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Asymmetry and stability of shape kinematics in microswimmers' motion. Or Y Phys Rev Lett; 2012 Jun; 108(25):258101. PubMed ID: 23004662 [TBL] [Abstract][Full Text] [Related]
8. Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers. Liu J; Xu T; Guan Y; Yan X; Ye C; Wu X Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400541 [TBL] [Abstract][Full Text] [Related]
9. Interactions between comoving magnetic microswimmers. Keaveny EE; Maxey MR Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041910. PubMed ID: 18517659 [TBL] [Abstract][Full Text] [Related]
10. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Carlsen RW; Edwards MR; Zhuang J; Pacoret C; Sitti M Lab Chip; 2014 Oct; 14(19):3850-9. PubMed ID: 25120224 [TBL] [Abstract][Full Text] [Related]
11. Predicting and Optimizing Microswimmer Performance from the Hydrodynamics of Its Components: The Relevance of Interactions. Giuliani N; Heltai L; DeSimone A Soft Robot; 2018 Aug; 5(4):410-424. PubMed ID: 29762082 [TBL] [Abstract][Full Text] [Related]
12. Diversity of biomedical applications of acoustic radiation force. Sarvazyan A Ultrasonics; 2010 Feb; 50(2):230-4. PubMed ID: 19880152 [TBL] [Abstract][Full Text] [Related]
13. Load response of shape-changing microswimmers scales with their swimming efficiency. Friedrich BM Phys Rev E; 2018 Apr; 97(4-1):042416. PubMed ID: 29758744 [TBL] [Abstract][Full Text] [Related]
14. Improving Swimming Performance of Photolithography-Based Microswimmers Using Curvature Structures. Tan L; Wang Z; Chen Z; Shi X; Cheang UK Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422394 [TBL] [Abstract][Full Text] [Related]
15. Robust acoustic trapping and perturbation of single-cell microswimmers illuminate three-dimensional swimming and ciliary coordination. Cui M; Dutcher SK; Bayly PV; Meacham JM Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2218951120. PubMed ID: 37307440 [TBL] [Abstract][Full Text] [Related]
17. Potential-well model in acoustic tweezers. Kang ST; Yeh CK IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720 [TBL] [Abstract][Full Text] [Related]
18. Programmable Design and Performance of Modular Magnetic Microswimmers. Pauer C; du Roure O; Heuvingh J; Liedl T; Tavacoli J Adv Mater; 2021 Apr; 33(16):e2006237. PubMed ID: 33719137 [TBL] [Abstract][Full Text] [Related]
19. 2D Magnetic Microswimmers for Targeted Cell Transport and 3D Cell Culture Structure Construction. Chen Z; Song X; Mu X; Zhang J; Cheang UK ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36752406 [TBL] [Abstract][Full Text] [Related]
20. Ultrasound Tracking of the Acoustically Actuated Microswimmer. Chen Q; Liu FW; Xiao Z; Sharma N; Cho SK; Kim K IEEE Trans Biomed Eng; 2019 Nov; 66(11):3231-3237. PubMed ID: 30843793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]