These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27991680)

  • 1. Toward amino acid typing for proteins in FFLUX.
    Fletcher TL; Popelier PL
    J Comput Chem; 2017 Mar; 38(6):336-345. PubMed ID: 27991680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FFLUX: Transferability of polarizable machine-learned electrostatics in peptide chains.
    Fletcher TL; Popelier PL
    J Comput Chem; 2017 May; 38(13):1005-1014. PubMed ID: 28295430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A FFLUX Water Model: Flexible, Polarizable and with a Multipolar Description of Electrostatics.
    Hughes ZE; Ren E; Thacker JCR; Symons BCB; Silva AF; Popelier PLA
    J Comput Chem; 2020 Mar; 41(7):619-628. PubMed ID: 31747059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the many-body nature of intramolecular forces in FFLUX and its implications.
    Konovalov A; Symons BCB; Popelier PLA
    J Comput Chem; 2021 Jan; 42(2):107-116. PubMed ID: 33107993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DL_FFLUX: A Parallel, Quantum Chemical Topology Force Field.
    Symons BCB; Bane MK; Popelier PLA
    J Chem Theory Comput; 2021 Nov; 17(11):7043-7055. PubMed ID: 34617748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water.
    Symons BCB; Popelier PLA
    J Chem Theory Comput; 2022 Sep; 18(9):5577-5588. PubMed ID: 35939826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning.
    Fletcher TL; Popelier PL
    J Chem Theory Comput; 2016 Jun; 12(6):2742-51. PubMed ID: 27224739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic Partitioning of the MPn (n = 2, 3, 4) Dynamic Electron Correlation Energy by the Interacting Quantum Atoms Method: A Fast and Accurate Electrostatic Potential Integral Approach.
    Vincent MA; Silva AF; Popelier PLA
    J Comput Chem; 2019 Dec; 40(32):2793-2800. PubMed ID: 31373709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation.
    Katagiri D; Fuji H; Neya S; Hoshino T
    J Comput Chem; 2008 Sep; 29(12):1930-44. PubMed ID: 18366016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realistic sampling of amino acid geometries for a multipolar polarizable force field.
    Hughes TJ; Cardamone S; Popelier PL
    J Comput Chem; 2015 Sep; 36(24):1844-57. PubMed ID: 26235784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do the neighboring residues in a polypeptide affect the electron distribution of an amino acid significantly? A quantitative study using the quantum theory of atoms in molecules (QTAIM).
    Lorenzo L; Gonzalez Moa MJ; Mandado M; Mosquera RA
    J Chem Inf Model; 2006; 46(5):2056-65. PubMed ID: 16995736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer.
    Davie SJ; Di Pasquale N; Popelier PL
    J Comput Chem; 2016 Oct; 37(27):2409-22. PubMed ID: 27535711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions.
    Di Pasquale N; Davie SJ; Popelier PLA
    J Chem Phys; 2018 Jun; 148(24):241724. PubMed ID: 29960379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
    Topham CM; Smith JC
    Comput Biol Chem; 2015 Feb; 54():33-43. PubMed ID: 25544680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FFLUX molecular simulations driven by atomic Gaussian process regression models.
    Manchev YT; Popelier PLA
    J Comput Chem; 2024 Jun; 45(15):1235-1246. PubMed ID: 38345165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation.
    Burn MJ; Popelier PLA
    J Comput Chem; 2022 Dec; 43(31):2084-2098. PubMed ID: 36165338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FEREBUS: Highly parallelized engine for kriging training.
    Di Pasquale N; Bane M; Davie SJ; Popelier PL
    J Comput Chem; 2016 Nov; 37(29):2606-16. PubMed ID: 27649926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum machine learning using atom-in-molecule-based fragments selected on the fly.
    Huang B; von Lilienfeld OA
    Nat Chem; 2020 Oct; 12(10):945-951. PubMed ID: 32929248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of conformationally dependent atomic multipole moments in carbohydrates.
    Cardamone S; Popelier PL
    J Comput Chem; 2015 Dec; 36(32):2361-73. PubMed ID: 26547500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests.
    Kaminski GA; Stern HA; Berne BJ; Friesner RA; Cao YX; Murphy RB; Zhou R; Halgren TA
    J Comput Chem; 2002 Dec; 23(16):1515-31. PubMed ID: 12395421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.