These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27991684)

  • 1. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts.
    Li S; Cheng C; Thomas A
    Adv Mater; 2017 Feb; 29(8):. PubMed ID: 27991684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.
    Kim M; Kim HW; Nam JY; In SI
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6891-9. PubMed ID: 26716261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic advancements in carbonaceous materials for bio-energy generation in microbial fuel cells: a review.
    Dhilllon SK; Kundu PP; Jain R
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):24815-24841. PubMed ID: 34993799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic advancements in sewage-driven microbial fuel cells: novel carbon nanotube cathodes and biomass-derived anodes for efficient renewable energy generation and wastewater treatment.
    Barakat NAM; Gamal S; Kim HY; Abd El-Salam NM; Fouad H; Fadali OA; Moustafa HM; Abdelraheem OH
    Front Chem; 2023; 11():1286572. PubMed ID: 38075493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells.
    Sonawane JM; Yadav A; Ghosh PC; Adeloju SB
    Biosens Bioelectron; 2017 Apr; 90():558-576. PubMed ID: 27825877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes.
    Grattieri M; Shivel ND; Sifat I; Bestetti M; Minteer SD
    ChemSusChem; 2017 May; 10(9):2053-2058. PubMed ID: 28244231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubular membrane cathodes for scalable power generation in microbial fuel cells.
    Zuo Y; Cheng S; Call D; Logan BE
    Environ Sci Technol; 2007 May; 41(9):3347-53. PubMed ID: 17539548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells.
    Zhang X; He W; Zhang R; Wang Q; Liang P; Huang X; Logan BE; Fellinger TP
    ChemSusChem; 2016 Oct; 9(19):2788-2795. PubMed ID: 27509893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of advanced anodes in microbial fuel cells for power generation: A review.
    Cai T; Meng L; Chen G; Xi Y; Jiang N; Song J; Zheng S; Liu Y; Zhen G; Huang M
    Chemosphere; 2020 Jun; 248():125985. PubMed ID: 32032871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation.
    Li F; Sharma Y; Lei Y; Li B; Zhou Q
    Appl Biochem Biotechnol; 2010 Jan; 160(1):168-81. PubMed ID: 19172235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathode performance as a factor in electricity generation in microbial fuel cells.
    Oh S; Min B; Logan BE
    Environ Sci Technol; 2004 Sep; 38(18):4900-4. PubMed ID: 15487802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in electrodes for microbial fuel cells.
    Wei J; Liang P; Huang X
    Bioresour Technol; 2011 Oct; 102(20):9335-44. PubMed ID: 21855328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.
    Thepsuparungsikul N; Phonthamachai N; Ng HY
    Water Sci Technol; 2012; 65(7):1208-14. PubMed ID: 22437017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black.
    Zhang X; Xia X; Ivanov I; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(3):2075-81. PubMed ID: 24422458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
    Logan B; Cheng S; Watson V; Estadt G
    Environ Sci Technol; 2007 May; 41(9):3341-6. PubMed ID: 17539547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anode and cathode materials characterization for a microbial fuel cell in half cell configuration.
    Pant D; Van Bogaert G; Porto-Carrero C; Diels L; Vanbroekhoven K
    Water Sci Technol; 2011; 63(10):2457-61. PubMed ID: 21977673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells.
    Borja-Maldonado F; López Zavala MÁ
    Heliyon; 2022 Jul; 8(7):e09849. PubMed ID: 35855980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.