These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27991791)

  • 1. Following the Assembly of Iron Oxide Nanocubes by Video Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring.
    Agthe M; Wetterskog E; Bergström L
    Langmuir; 2017 Jan; 33(1):303-310. PubMed ID: 27991791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved viscoelastic properties of self-assembling iron oxide nanocube superlattices probed by quartz crystal microbalance with dissipation monitoring.
    Kapuscinski M; Agthe M; Bergström L
    J Colloid Interface Sci; 2018 Jul; 522():104-110. PubMed ID: 29579561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays.
    Wetterskog E; Agthe M; Mayence A; Grins J; Wang D; Rana S; Ahniyaz A; Salazar-Alvarez G; Bergström L
    Sci Technol Adv Mater; 2014 Oct; 15(5):055010. PubMed ID: 27877722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the structure and habit of iron oxide mesocrystals.
    Wetterskog E; Klapper A; Disch S; Josten E; Hermann RP; Rücker U; Brückel T; Bergström L; Salazar-Alvarez G
    Nanoscale; 2016 Aug; 8(34):15571-80. PubMed ID: 27448065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal Evolution of Superlattice Contraction and Defect-Induced Strain Anisotropy in Mesocrystals during Nanocube Self-Assembly.
    Kapuscinski M; Agthe M; Lv ZP; Liu Y; Segad M; Bergström L
    ACS Nano; 2020 May; 14(5):5337-5347. PubMed ID: 32338498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces.
    Olsson AL; Quevedo IR; He D; Basnet M; Tufenkji N
    ACS Nano; 2013 Sep; 7(9):7833-43. PubMed ID: 23964846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy.
    Brunner JJ; Krumova M; Cölfen H; Sturm Née Rosseeva EV
    Beilstein J Nanotechnol; 2019; 10():894-900. PubMed ID: 31165016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation.
    Disch S; Wetterskog E; Hermann RP; Korolkov D; Busch P; Boesecke P; Lyon O; Vainio U; Salazar-Alvarez G; Bergström L; Brückel T
    Nanoscale; 2013 May; 5(9):3969-75. PubMed ID: 23536023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered Structures of Functionalized Silica Nanoparticles on Gold Surfaces: Correlation of Quartz Crystal Microbalance with Structural Characterization.
    Grunewald C; Schmudde M; Noufele CN; Graf C; Risse T
    Anal Chem; 2015 Oct; 87(20):10642-9. PubMed ID: 26394850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops.
    Agthe M; Plivelic TS; Labrador A; Bergström L; Salazar-Alvarez G
    Nano Lett; 2016 Nov; 16(11):6838-6843. PubMed ID: 27779885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces.
    Andersson M; Andersson J; Sellborn A; Berglin M; Nilsson B; Elwing H
    Biosens Bioelectron; 2005 Jul; 21(1):79-86. PubMed ID: 15967354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Stage Assembly of Mesocrystal Fibers with Tunable Diameters in Weak Magnetic Fields.
    Kapuscinski M; Munier P; Segad M; Bergström L
    Nano Lett; 2020 Oct; 20(10):7359-7366. PubMed ID: 32924498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing.
    Ohlsson G; Langhammer C; Zorić I; Kasemo B
    Rev Sci Instrum; 2009 Aug; 80(8):083905. PubMed ID: 19725665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quartz crystal microbalance study of the interfacial nanobubbles.
    Zhang XH
    Phys Chem Chem Phys; 2008 Dec; 10(45):6842-8. PubMed ID: 19015789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals.
    Josten E; Angst M; Glavic A; Zakalek P; Rücker U; Seeck OH; Kovács A; Wetterskog E; Kentzinger E; Dunin-Borkowski RE; Bergström L; Brückel T
    Nanoscale Horiz; 2020 Jul; 5(7):1065-1072. PubMed ID: 32542274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nanoparticle size and charge on interactions with self-assembled collagen.
    Wang D; Ye J; Hudson SD; Scott KC; Lin-Gibson S
    J Colloid Interface Sci; 2014 Mar; 417():244-9. PubMed ID: 24407683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesocrystals from Platinum Nanocubes.
    Jenewein C; Cölfen H
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Binary Mesocrystals from Anisotropic Nanoparticles.
    Jenewein C; Avaro J; Appel C; Liebi M; Cölfen H
    Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202112461. PubMed ID: 34669241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous monitoring of electroformation of phospholipid vesicles by quartz crystal microbalance and optical microscopy.
    Niri VH; Flatt BK; Fakhraai Z; Forrest JA
    Chem Phys Lipids; 2010 Jan; 163(1):36-41. PubMed ID: 19883636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of tethered vesicle assemblies by quartz crystal microbalance with dissipation monitoring: Binding dynamics and bound water content.
    Patel AR; Frank CW
    Langmuir; 2006 Aug; 22(18):7587-99. PubMed ID: 16922537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.