These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 27991796)
1. Thermoactivated Electrical Conductivity in Perylene Diimide Nanofiber Materials. Wu N; Zhang Y; Wang C; Slattum PM; Yang X; Zang L J Phys Chem Lett; 2017 Jan; 8(1):292-298. PubMed ID: 27991796 [TBL] [Abstract][Full Text] [Related]
2. Chemical Self-Doping of Organic Nanoribbons for High Conductivity and Potential Application as Chemiresistive Sensor. Wu N; Wang C; Bunes BR; Zhang Y; Slattum PM; Yang X; Zang L ACS Appl Mater Interfaces; 2016 May; 8(19):12360-8. PubMed ID: 27136452 [TBL] [Abstract][Full Text] [Related]
3. Donor-Acceptor Supramolecular Organic Nanofibers as Visible-Light Photoelectrocatalysts for Hydrogen Production. Yang L; Wang M; Slattum PM; Bunes BR; Wang Y; Wang C; Zang L ACS Appl Mater Interfaces; 2018 Jun; 10(23):19764-19772. PubMed ID: 29791128 [TBL] [Abstract][Full Text] [Related]
4. pn-Heterojunction effects of perylene tetracarboxylic diimide derivatives on pentacene field-effect transistor. Yu SH; Kang B; An G; Kim B; Lee MH; Kang MS; Kim H; Lee JH; Lee S; Cho K; Lee JY; Cho JH ACS Appl Mater Interfaces; 2015 Jan; 7(3):2025-31. PubMed ID: 25581881 [TBL] [Abstract][Full Text] [Related]
5. Morphology control of nanofibril donor-acceptor heterojunction to achieve high photoconductivity: exploration of new molecular design rule. Huang H; Chou CE; Che Y; Li L; Wang C; Yang X; Peng Z; Zang L J Am Chem Soc; 2013 Nov; 135(44):16490-6. PubMed ID: 24094119 [TBL] [Abstract][Full Text] [Related]
6. Effect of side-chain substituents on self-assembly of perylene diimide molecules: morphology control. Balakrishnan K; Datar A; Naddo T; Huang J; Oitker R; Yen M; Zhao J; Zang L J Am Chem Soc; 2006 Jun; 128(22):7390-8. PubMed ID: 16734495 [TBL] [Abstract][Full Text] [Related]
7. Interfacial Donor-Acceptor Engineering of Nanofiber Materials To Achieve Photoconductivity and Applications. Zang L Acc Chem Res; 2015 Oct; 48(10):2705-14. PubMed ID: 26415109 [TBL] [Abstract][Full Text] [Related]
9. Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: a density functional theory investigation. Delgado MC; Kim EG; da Silva Filho DA; Bredas JL J Am Chem Soc; 2010 Mar; 132(10):3375-87. PubMed ID: 20166710 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Study of Structure Tunable Perylene Diimides and The Nanofibers Deposited on Electrodes. Xue Z; Chen S; Xue Y; Watson OA; Zang L Langmuir; 2019 Sep; 35(37):12009-12016. PubMed ID: 31433938 [TBL] [Abstract][Full Text] [Related]
11. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films. Singh R; Shivanna R; Iosifidis A; Butt HJ; Floudas G; Narayan KS; Keivanidis PE ACS Appl Mater Interfaces; 2015 Nov; 7(44):24876-86. PubMed ID: 26480854 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization and optoelectronic properties of a new perylene diimide-benzimidazole type solar light harvesting dye. Dinçalp H; Çimen O; Ameri T; Brabec CJ; İçli S Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():197-206. PubMed ID: 24667425 [TBL] [Abstract][Full Text] [Related]
13. Ultrathin n-type organic nanoribbons with high photoconductivity and application in optoelectronic vapor sensing of explosives. Che Y; Yang X; Liu G; Yu C; Ji H; Zuo J; Zhao J; Zang L J Am Chem Soc; 2010 Apr; 132(16):5743-50. PubMed ID: 20356049 [TBL] [Abstract][Full Text] [Related]
14. Theoretical Prediction of Isotope Effects on Charge Transport in Organic Semiconductors. Jiang Y; Geng H; Shi W; Peng Q; Zheng X; Shuai Z J Phys Chem Lett; 2014 Jul; 5(13):2267-73. PubMed ID: 26279545 [TBL] [Abstract][Full Text] [Related]
15. Photoelectron spectroscopy studies of PTCDI on Ag/Si(111)-3×3. Emanuelsson C; Johansson LSO; Zhang HM J Chem Phys; 2018 Jul; 149(4):044702. PubMed ID: 30068162 [TBL] [Abstract][Full Text] [Related]
16. Molecular Dynamics Simulations of Perylenediimide DNA Base Surrogates. Markegard CB; Mazaheripour A; Jocson JM; Burke AM; Dickson MN; Gorodetsky AA; Nguyen HD J Phys Chem B; 2015 Sep; 119(35):11459-65. PubMed ID: 26295733 [TBL] [Abstract][Full Text] [Related]
17. Computing dispersive, polarizable, and electrostatic shifts of excitation energy in supramolecular systems: PTCDI crystal. Megow J J Chem Phys; 2016 Sep; 145(9):094109. PubMed ID: 27608991 [TBL] [Abstract][Full Text] [Related]
18. Theoretical investigation of non-Förster exciton transfer mechanisms in perylene diimide donor, phenylene bridge, and terrylene diimide acceptor systems. Yang L; Jang SJ J Chem Phys; 2020 Oct; 153(14):144305. PubMed ID: 33086841 [TBL] [Abstract][Full Text] [Related]
19. Hole-transfer induced energy transfer in perylene diimide dyads with a donor-spacer-acceptor motif. Kölle P; Pugliesi I; Langhals H; Wilcken R; Esterbauer AJ; de Vivie-Riedle R; Riedle E Phys Chem Chem Phys; 2015 Oct; 17(38):25061-72. PubMed ID: 26347443 [TBL] [Abstract][Full Text] [Related]
20. Reflection of Molecular Twist in Unoccupied Molecular Orbitals in PTCDI Derivatives: A Density Functional Study. Mukherjee B; Mukherjee M ACS Omega; 2017 Dec; 2(12):9181-9190. PubMed ID: 31457434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]