These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27992201)

  • 1. Metal-Organic Frameworks as Micromotors with Tunable Engines and Brakes.
    Li J; Yu X; Xu M; Liu W; Sandraz E; Lan H; Wang J; Cohen SM
    J Am Chem Soc; 2017 Jan; 139(2):611-614. PubMed ID: 27992201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
    Chen C; Tang S; Teymourian H; Karshalev E; Zhang F; Li J; Mou F; Liang Y; Guan J; Wang J
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8110-8114. PubMed ID: 29737003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioactive Uranium Preconcentration
    Ying Y; Pourrahimi AM; Sofer Z; Matějková S; Pumera M
    ACS Nano; 2019 Oct; 13(10):11477-11487. PubMed ID: 31592633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and Continuous Fabrication of Self-Propelled Micromotors with Photocatalytic Metal-Organic Frameworks for Enhanced Synergistic Environmental Remediation.
    Chen L; Zhang MJ; Zhang SY; Shi L; Yang YM; Liu Z; Ju XJ; Xie R; Wang W; Chu LY
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35120-35131. PubMed ID: 32648440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous UiO-Type Metal-Organic Framework.
    Yang Y; Arqué X; Patiño T; Guillerm V; Blersch PR; Pérez-Carvajal J; Imaz I; Maspoch D; Sánchez S
    J Am Chem Soc; 2020 Dec; 142(50):20962-20967. PubMed ID: 33274916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Self-Assembly of MOFs Colloidosomes for Bubble-Propelled Micromotors and Stirring-Free Environmental Remediation.
    Huang H; Li J; Yuan M; Yang H; Zhao Y; Ying Y; Wang S
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211163. PubMed ID: 36121046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyhedral Micromotors of Metal-Organic Frameworks: Symmetry Breaking and Propulsion.
    Wang Z; Xu W; Wang Z; Lyu D; Mu Y; Duan W; Wang Y
    J Am Chem Soc; 2021 Dec; 143(47):19881-19892. PubMed ID: 34788029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors.
    Hayakawa M; Onoe H; Nagai KH; Takinoue M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rise of metal-organic framework based micromotors.
    Bujalance-Fernández J; Jurado-Sánchez B; Escarpa A
    Chem Commun (Camb); 2023 Aug; 59(70):10464-10475. PubMed ID: 37580970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Speed Regulation of Self-Propelled Janus Micromotors via Thermoresponsive Bottle-Brush Polymers.
    Fiedler C; Ulbricht C; Truglas T; Wielend D; Bednorz M; Groiss H; Brüggemann O; Teasdale I; Salinas Y
    Chemistry; 2021 Feb; 27(10):3262-3267. PubMed ID: 33205559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubble-Propelled Micromotors.
    Moo JG; Wang H; Pumera M
    Chemistry; 2016 Jan; 22(1):355-60. PubMed ID: 26526004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations.
    Manna K; Zhang T; Lin W
    J Am Chem Soc; 2014 May; 136(18):6566-9. PubMed ID: 24758529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels.
    Gao W; Pei A; Dong R; Wang J
    J Am Chem Soc; 2014 Feb; 136(6):2276-9. PubMed ID: 24475997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapor-Driven Propulsion of Catalytic Micromotors.
    Dong R; Li J; Rozen I; Ezhilan B; Xu T; Christianson C; Gao W; Saintillan D; Ren B; Wang J
    Sci Rep; 2015 Aug; 5():13226. PubMed ID: 26285032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Properties Enabled Metal Organic Framework Micromotors for Highly Efficient Self-Propulsion and Enhanced Antibacterial Therapy.
    Liu X; Sun X; Peng Y; Wang Y; Xu D; Chen W; Wang W; Yan X; Ma X
    ACS Nano; 2022 Sep; 16(9):14666-14678. PubMed ID: 36018321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple and Non-Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal-Organic Frameworks.
    Hendon CH; Bonnefoy J; Quadrelli EA; Canivet J; Chambers MB; Rousse G; Walsh A; Fontecave M; Mellot-Draznieks C
    Chemistry; 2016 Mar; 22(11):3713-8. PubMed ID: 26807710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of Optimization and Metalated-Ligand Exchange: An Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2 Separation.
    Hu Z; Faucher S; Zhuo Y; Sun Y; Wang S; Zhao D
    Chemistry; 2015 Nov; 21(48):17246-55. PubMed ID: 26477589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal-Organic Frameworks for Transformation of CO
    Liang J; Xie YQ; Wu Q; Wang XY; Liu TT; Li HF; Huang YB; Cao R
    Inorg Chem; 2018 Mar; 57(5):2584-2593. PubMed ID: 29430915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application and Limitations of Nanocasting in Metal-Organic Frameworks.
    Malonzo CD; Wang Z; Duan J; Zhao W; Webber TE; Li Z; Kim IS; Kumar A; Bhan A; Platero-Prats AE; Chapman KW; Farha OK; Hupp JT; Martinson ABF; Penn RL; Stein A
    Inorg Chem; 2018 Mar; 57(5):2782-2790. PubMed ID: 29461822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.