These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27992263)

  • 1. Leveraging Large-Scale Semantic Networks for Adaptive Robot Task Learning and Execution.
    Boteanu A; St Clair A; Mohseni-Kabir A; Saldanha C; Chernova S
    Big Data; 2016 Dec; 4(4):217-235. PubMed ID: 27992263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Semantic-Based Gas Source Localization with a Mobile Robot Combining Vision and Chemical Sensing.
    Monroy J; Ruiz-Sarmiento JR; Moreno FA; Melendez-Fernandez F; Galindo C; Gonzalez-Jimenez J
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30487414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-Oriented Robot Cognitive Manipulation Planning Using Affordance Segmentation and Logic Reasoning.
    Wang Z; Tian G
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor explication: knowledge-based robotic plan execution through logical objects.
    Budenske J; Gini M
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(4):611-25. PubMed ID: 18255901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning compliant manipulation through kinesthetic and tactile human-robot interaction.
    Kronander K; Billard A
    IEEE Trans Haptics; 2014; 7(3):367-80. PubMed ID: 25248219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating planning perception and action for informed object search.
    Manso LJ; Gutierrez MA; Bustos P; Bachiller P
    Cogn Process; 2018 May; 19(2):285-296. PubMed ID: 28808825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Prior Selection for Repertoire-Based Online Adaptation in Robotics.
    Kaushik R; Desreumaux P; Mouret JB
    Front Robot AI; 2019; 6():151. PubMed ID: 33501166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive and incremental learning of spatial object relations from human demonstrations.
    Kartmann R; Asfour T
    Front Robot AI; 2023; 10():1151303. PubMed ID: 37275214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework for neurosymbolic robot action planning using large language models.
    Capitanelli A; Mastrogiovanni F
    Front Neurorobot; 2024; 18():1342786. PubMed ID: 38895095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm.
    Cabras S; Castellanos ME; Staffetti E
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1372-86. PubMed ID: 20106744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time multiple human perception with color-depth cameras on a mobile robot.
    Zhang H; Reardon C; Parker LE
    IEEE Trans Cybern; 2013 Oct; 43(5):1429-41. PubMed ID: 23974672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OHO: A Multi-Modal, Multi-Purpose Dataset for Human-Robot Object Hand-Over.
    Stephan B; Köhler M; Müller S; Zhang Y; Gross HM; Notni G
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off-line simulation inspires insight: A neurodynamics approach to efficient robot task learning.
    Sousa E; Erlhagen W; Ferreira F; Bicho E
    Neural Netw; 2015 Dec; 72():123-39. PubMed ID: 26548945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Language bootstrapping: learning word meanings from perception-action association.
    Salvi G; Montesano L; Bernardino A; Santos-Victor J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):660-71. PubMed ID: 22106152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-Viewpoint Semantic Mapping: Integrating Human and Robot Perspectives for Improved 3D Semantic Reconstruction.
    Kopácsi L; Baffy B; Baranyi G; Skaf J; Sörös G; Szeier S; Lőrincz A; Sonntag D
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and subjective evaluation of a human-robot object hand-over task.
    Dehais F; Sisbot EA; Alami R; Causse M
    Appl Ergon; 2011 Nov; 42(6):785-91. PubMed ID: 21296335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robotic Cognitive Control Framework for Collaborative Task Execution and Learning.
    Caccavale R; Finzi A
    Top Cogn Sci; 2022 Apr; 14(2):327-343. PubMed ID: 34826350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.