BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27992331)

  • 21. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.
    Crake C; Owen J; Smart S; Coviello C; Coussios CC; Carlisle R; Stride E
    Ultrasound Med Biol; 2016 Dec; 42(12):3022-3036. PubMed ID: 27666788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency-sum beamforming for passive cavitation imaging.
    Abadi SH; Haworth KJ; Mercado-Shekhar KP; Dowling DR
    J Acoust Soc Am; 2018 Jul; 144(1):198. PubMed ID: 30075672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive spatial mapping of inertial cavitation during HIFU exposure.
    Gyöngy M; Coussios CC
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer.
    Heymans SV; Martindale CF; Suler A; Pouliopoulos AN; Dickinson RJ; Choi JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Aug; 64(8):1234-1244. PubMed ID: 28650807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Weighting the Passive Acoustic Mapping Technique With the Phase Coherence Factor for Passive Ultrasound Imaging of Ultrasound-Induced Cavitation.
    Boulos P; Varray F; Poizat A; Ramalli A; Gilles B; Bera JC; Cachard C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2301-2310. PubMed ID: 30273149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.
    Haworth KJ; Raymond JL; Radhakrishnan K; Moody MR; Huang SL; Peng T; Shekhar H; Klegerman ME; Kim H; McPherson DD; Holland CK
    Ultrasound Med Biol; 2016 Feb; 42(2):518-27. PubMed ID: 26547633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system.
    Farny CH; Holt RG; Roy RA
    Ultrasound Med Biol; 2009 Apr; 35(4):603-15. PubMed ID: 19110368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy.
    Stride EP; Coussios CC
    Proc Inst Mech Eng H; 2010; 224(2):171-91. PubMed ID: 20349814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Passive Acoustic Mapping Using Data-Adaptive Beamforming Based on Higher Order Statistics.
    Lyka E; Coviello CM; Paverd C; Gray MD; Coussios CC
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2582-2592. PubMed ID: 29994701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.
    Deng L; O'Reilly MA; Jones RM; An R; Hynynen K
    Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.
    Coviello CM; Kozick RJ; Hurrell A; Smith PP; Coussios CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2322-30. PubMed ID: 23143581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative ultrasound method to detect and monitor laser-induced cavitation bubbles.
    Karpiouk AB; Aglyamov SR; Bourgeois F; Ben-Yakar A; Emelianov SY
    J Biomed Opt; 2008; 13(3):034011. PubMed ID: 18601556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using passive cavitation images to classify high-intensity focused ultrasound lesions.
    Haworth KJ; Salgaonkar VA; Corregan NM; Holland CK; Mast TD
    Ultrasound Med Biol; 2015 Sep; 41(9):2420-34. PubMed ID: 26051309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sum-of-harmonics method for improved narrowband and broadband signal quantification during passive monitoring of ultrasound therapies.
    Lyka E; Coviello C; Kozick R; Coussios CC
    J Acoust Soc Am; 2016 Jul; 140(1):741. PubMed ID: 27475195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimizing the thermal losses from perfusion during focused ultrasound exposures with flowing microbubbles.
    Zhang S; Ding T; Wan M; Jiang H; Yang X; Zhong H; Wang S
    J Acoust Soc Am; 2011 Apr; 129(4):2336-44. PubMed ID: 21476689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-Array Passive Acoustic Mapping for Cavitation Imaging With Enhanced 2-D Resolution.
    Gray MD; Elbes D; Paverd C; Lyka E; Coviello CM; Cleveland RO; Coussios CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):647-663. PubMed ID: 32845836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature.
    Gâteau J; Marsac L; Pernot M; Aubry JF; Tanter M; Fink M
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):134-44. PubMed ID: 19770084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable Nucleation of Cavitation from Plasmonic Gold Nanoparticles for Enhancing High Intensity Focused Ultrasound Applications.
    McLaughlan JR
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Convolutional Neural Network for Beamforming and Image Reconstruction in Passive Cavitation Imaging.
    Sharahi HJ; Acconcia CN; Li M; Martel A; Hynynen K
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining radiation force with cavitation for enhanced sonothrombolysis.
    Chuang YH; Cheng PW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):97-104. PubMed ID: 23287916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.