BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 27992409)

  • 1. In vivo high-throughput profiling of CRISPR-Cpf1 activity.
    Kim HK; Song M; Lee J; Menon AV; Jung S; Kang YM; Choi JW; Woo E; Koh HC; Nam JW; Kim H
    Nat Methods; 2017 Feb; 14(2):153-159. PubMed ID: 27992409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.
    Tang X; Lowder LG; Zhang T; Malzahn AA; Zheng X; Voytas DF; Zhong Z; Chen Y; Ren Q; Li Q; Kirkland ER; Zhang Y; Qi Y
    Nat Plants; 2017 Feb; 3():17018. PubMed ID: 28211909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
    Kleinstiver BP; Tsai SQ; Prew MS; Nguyen NT; Welch MM; Lopez JM; McCaw ZR; Aryee MJ; Joung JK
    Nat Biotechnol; 2016 Aug; 34(8):869-74. PubMed ID: 27347757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1.
    Park J; Bae S
    Bioinformatics; 2018 Mar; 34(6):1077-1079. PubMed ID: 29186338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of the Adenovirus Vector-Mediated CRISPR/Cpf1 System and the Application for Primary Human Hepatocytes Prepared from Humanized Mice with Chimeric Liver.
    Tsukamoto T; Sakai E; Iizuka S; Taracena-Gándara M; Sakurai F; Mizuguchi H
    Biol Pharm Bull; 2018; 41(7):1089-1095. PubMed ID: 29962404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
    Singh D; Mallon J; Poddar A; Wang Y; Tippana R; Yang O; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5444-5449. PubMed ID: 29735714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells.
    Tóth E; Weinhardt N; Bencsura P; Huszár K; Kulcsár PI; Tálas A; Fodor E; Welker E
    Biol Direct; 2016 Sep; 11():46. PubMed ID: 27630115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
    Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS
    Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.
    Li B; Zeng C; Dong Y
    Nat Protoc; 2018 May; 13(5):899-914. PubMed ID: 29622802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.
    Bayat H; Modarressi MH; Rahimpour A
    Curr Microbiol; 2018 Jan; 75(1):107-115. PubMed ID: 29189942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized CRISPR-Cpf1 system for genome editing in zebrafish.
    Fernandez JP; Vejnar CE; Giraldez AJ; Rouet R; Moreno-Mateos MA
    Methods; 2018 Nov; 150():11-18. PubMed ID: 29964176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
    Nishimasu H; Yamano T; Gao L; Zhang F; Ishitani R; Nureki O
    Mol Cell; 2017 Jul; 67(1):139-147.e2. PubMed ID: 28595896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.
    Zetsche B; Gootenberg JS; Abudayyeh OO; Slaymaker IM; Makarova KS; Essletzbichler P; Volz SE; Joung J; van der Oost J; Regev A; Koonin EV; Zhang F
    Cell; 2015 Oct; 163(3):759-71. PubMed ID: 26422227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Eurwilaichitr L; Champreda V; Chantasingh D; Pootanakit K
    BMC Biotechnol; 2021 Feb; 21(1):15. PubMed ID: 33573639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Cpf1 variants with altered PAM specificities.
    Gao L; Cox DBT; Yan WX; Manteiga JC; Schneider MW; Yamano T; Nishimasu H; Nureki O; Crosetto N; Zhang F
    Nat Biotechnol; 2017 Aug; 35(8):789-792. PubMed ID: 28581492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
    Zhang J; Hong W; Zong W; Wang P; Wang Y
    J Biotechnol; 2018 Oct; 284():27-30. PubMed ID: 30081040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing.
    Ding D; Chen K; Chen Y; Li H; Xie K
    Mol Plant; 2018 Apr; 11(4):542-552. PubMed ID: 29462720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.