BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27992412)

  • 1. Self-assembling DNA nanotubes to connect molecular landmarks.
    Mohammed AM; Šulc P; Zenk J; Schulman R
    Nat Nanotechnol; 2017 May; 12(4):312-316. PubMed ID: 27992412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminating DNA Tile Assembly with Nanostructured Caps.
    Agrawal DK; Jiang R; Reinhart S; Mohammed AM; Jorgenson TD; Schulman R
    ACS Nano; 2017 Oct; 11(10):9770-9779. PubMed ID: 28901745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries.
    Jorgenson TD; Mohammed AM; Agrawal DK; Schulman R
    ACS Nano; 2017 Feb; 11(2):1927-1936. PubMed ID: 28085250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterization of programmable DNA nanotubes.
    Rothemund PW; Ekani-Nkodo A; Papadakis N; Kumar A; Fygenson DK; Winfree E
    J Am Chem Soc; 2004 Dec; 126(50):16344-52. PubMed ID: 15600335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of precisely defined DNA nanotube superstructures using DNA origami seeds.
    Mohammed AM; Velazquez L; Chisenhall A; Schiffels D; Fygenson DK; Schulman R
    Nanoscale; 2017 Jan; 9(2):522-526. PubMed ID: 27957574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joining and scission in the self-assembly of nanotubes from DNA tiles.
    Ekani-Nkodo A; Kumar A; Fygenson DK
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268301. PubMed ID: 15698032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical assembly and modeling of DNA nanotube networks using Y-shaped DNA origami seeds.
    Jiang Y; Pacella MS; Lee S; Zhang J; Gunn JA; Vallejo P; Singh P; Hou T; Liu E; Schulman R
    Nanoscale; 2024 Jun; 16(24):11688-11695. PubMed ID: 38860495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfiguring DNA Nanotube Architectures
    Schaffter SW; Schneider J; Agrawal DK; Pacella MS; Rothchild E; Murphy T; Schulman R
    ACS Nano; 2020 Oct; 14(10):13451-13462. PubMed ID: 33048538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures.
    Ke Y; Liu Y; Zhang J; Yan H
    J Am Chem Soc; 2006 Apr; 128(13):4414-21. PubMed ID: 16569019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical principles for DNA tile self-assembly.
    Evans CG; Winfree E
    Chem Soc Rev; 2017 Jun; 46(12):3808-3829. PubMed ID: 28489096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure.
    Hamblin GD; Hariri AA; Carneiro KM; Lau KL; Cosa G; Sleiman HF
    ACS Nano; 2013 Apr; 7(4):3022-8. PubMed ID: 23452006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addressable DNA nanotubes with repetitive components.
    Bai T; Wei B
    Nanoscale; 2019 Dec; 11(48):23105-23109. PubMed ID: 31776535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.
    Sun J; Jiang X; Lund R; Downing KH; Balsara NP; Zuckermann RN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3954-9. PubMed ID: 27035944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous dynamic control of DNA nanostructure self-assembly.
    Green LN; Subramanian HKK; Mardanlou V; Kim J; Hariadi RF; Franco E
    Nat Chem; 2019 Jun; 11(6):510-520. PubMed ID: 31011170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.
    Lo PK; Altvater F; Sleiman HF
    J Am Chem Soc; 2010 Aug; 132(30):10212-4. PubMed ID: 20662492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and site-specific organization of micron-scale biomolecular devices on living mammalian cells.
    Jia S; Phua SC; Nihongaki Y; Li Y; Pacella M; Li Y; Mohammed AM; Sun S; Inoue T; Schulman R
    Nat Commun; 2021 Sep; 12(1):5729. PubMed ID: 34593818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA nanotube formation based on normal mode analysis.
    Qian P; Seo S; Kim J; Kim S; Lim BS; Liu WK; Kim BJ; LaBean TH; Park SH; Kim MK
    Nanotechnology; 2012 Mar; 23(10):105704. PubMed ID: 22361575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.