BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 27992553)

  • 21. Architecture of retinal projections to the central circadian pacemaker.
    Fernandez DC; Chang YT; Hattar S; Chen SK
    Proc Natl Acad Sci U S A; 2016 May; 113(21):6047-52. PubMed ID: 27162356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium.
    Peirson SN; Bovee-Geurts PH; Lupi D; Jeffery G; DeGrip WJ; Foster RG
    Brain Res Mol Brain Res; 2004 Apr; 123(1-2):132-5. PubMed ID: 15046875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ocular Photoreception for Circadian Rhythm Entrainment in Mammals.
    Van Gelder RN; Buhr ED
    Annu Rev Vis Sci; 2016 Oct; 2():153-169. PubMed ID: 28532353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rev-Erbα modulates retinal visual processing and behavioral responses to light.
    Ait-Hmyed Hakkari O; Acar N; Savier E; Spinnhirny P; Bennis M; Felder-Schmittbuhl MP; Mendoza J; Hicks D
    FASEB J; 2016 Nov; 30(11):3690-3701. PubMed ID: 27440795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond irradiance: Visual signals influencing mammalian circadian function.
    Mouland JW; Brown TM
    Prog Brain Res; 2022; 273(1):145-169. PubMed ID: 35940714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A colourful clock.
    van Diepen HC; Foster RG; Meijer JH
    PLoS Biol; 2015 May; 13(5):e1002160. PubMed ID: 25996907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells.
    Mao CA; Li H; Zhang Z; Kiyama T; Panda S; Hattar S; Ribelayga CP; Mills SL; Wang SW
    J Neurosci; 2014 Sep; 34(39):13083-95. PubMed ID: 25253855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm.
    Markwell EL; Feigl B; Zele AJ
    Clin Exp Optom; 2010 May; 93(3):137-49. PubMed ID: 20557555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness.
    Sato RY; Yamanaka Y
    Am J Physiol Regul Integr Comp Physiol; 2023 Apr; 324(4):R526-R535. PubMed ID: 36802951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of PACAP-containing retinal ganglion cells in circadian timing.
    Hannibal J
    Int Rev Cytol; 2006; 251():1-39. PubMed ID: 16939776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.
    Hattar S; Lucas RJ; Mrosovsky N; Thompson S; Douglas RH; Hankins MW; Lem J; Biel M; Hofmann F; Foster RG; Yau KW
    Nature; 2003 Jul; 424(6944):76-81. PubMed ID: 12808468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice.
    Pickard GE; Baver SB; Ogilvie MD; Sollars PJ
    PLoS One; 2009; 4(3):e4984. PubMed ID: 19319185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Divergent projection patterns of M1 ipRGC subtypes.
    Li JY; Schmidt TM
    J Comp Neurol; 2018 Sep; 526(13):2010-2018. PubMed ID: 29888785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melanopsin: a novel photopigment involved in the photoentrainment of the brain's biological clock?
    Hannibal J; Fahrenkrug J
    Ann Med; 2002; 34(5):401-7. PubMed ID: 12452484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental stimulus perception and control of circadian clocks.
    Cermakian N; Sassone-Corsi P
    Curr Opin Neurobiol; 2002 Aug; 12(4):359-65. PubMed ID: 12139981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment.
    Chen SK; Chew KS; McNeill DS; Keeley PW; Ecker JL; Mao BQ; Pahlberg J; Kim B; Lee SC; Fox MA; Guido W; Wong KY; Sampath AP; Reese BE; Kuruvilla R; Hattar S
    Neuron; 2013 Feb; 77(3):503-15. PubMed ID: 23395376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Adrenal Clock Prevents Aberrant Light-Induced Alterations in Circadian Glucocorticoid Rhythms.
    Engeland WC; Massman L; Mishra S; Yoder JM; Leng S; Pignatti E; Piper ME; Carlone DL; Breault DT; Kofuji P
    Endocrinology; 2018 Dec; 159(12):3950-3964. PubMed ID: 30321360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A broad role for melanopsin in nonvisual photoreception.
    Gooley JJ; Lu J; Fischer D; Saper CB
    J Neurosci; 2003 Aug; 23(18):7093-106. PubMed ID: 12904470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melanopsin in the circadian timing system.
    Beaulé C; Robinson B; Lamont EW; Amir S
    J Mol Neurosci; 2003; 21(1):73-89. PubMed ID: 14500998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.