BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 27993002)

  • 1. Recycling in Asymmetric Catalysis.
    Moberg C
    Acc Chem Res; 2016 Dec; 49(12):2736-2745. PubMed ID: 27993002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantiomer-selective activation of racemic catalysts.
    Mikami K; Terada M; Korenaga T; Matsumoto Y; Matsukawa S
    Acc Chem Res; 2000 Jun; 33(6):391-401. PubMed ID: 10891057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization.
    Ito H; Kunii S; Sawamura M
    Nat Chem; 2010 Nov; 2(11):972-6. PubMed ID: 20966955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Activation.
    Mikami K; Terada M; Korenaga T; Matsumoto Y; Ueki M; Angelaud R
    Angew Chem Int Ed Engl; 2000 Oct; 39(20):3532-3556. PubMed ID: 11091405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions.
    Turner NJ
    Curr Opin Chem Biol; 2004 Apr; 8(2):114-9. PubMed ID: 15062770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diarylprolinol silyl ether system: a general organocatalyst.
    Jensen KL; Dickmeiss G; Jiang H; Albrecht L; Jørgensen KA
    Acc Chem Res; 2012 Feb; 45(2):248-64. PubMed ID: 21848275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic control of asymmetric amplification in amino acid catalysis.
    Klussmann M; Iwamura H; Mathew SP; Wells DH; Pandya U; Armstrong A; Blackmond DG
    Nature; 2006 Jun; 441(7093):621-3. PubMed ID: 16738656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric autocatalysis of pyrimidyl alkanol and its application to the study on the origin of homochirality.
    Soai K; Kawasaki T; Matsumoto A
    Acc Chem Res; 2014 Dec; 47(12):3643-54. PubMed ID: 25511374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition.
    Hatch HW; Stillinger FH; Debenedetti PG
    J Chem Phys; 2010 Dec; 133(22):224502. PubMed ID: 21171686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Effects in Asymmetric Catalysis by Design: Concept, Synthesis, and Applications.
    Mayer LC; Heitsch S; Trapp O
    Acc Chem Res; 2022 Dec; 55(23):3345-3361. PubMed ID: 36351215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain.
    Choudary BM; Chowdari NS; Madhi S; Kantam ML
    J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation.
    You H; Rideau E; Sidera M; Fletcher SP
    Nature; 2015 Jan; 517(7534):351-5. PubMed ID: 25592541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minor enantiomer recycling: metal catalyst, organocatalyst and biocatalyst working in concert.
    Wingstrand E; Laurell A; Fransson L; Hult K; Moberg C
    Chemistry; 2009 Nov; 15(44):12107-13. PubMed ID: 19768712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis.
    Tokunaga M; Larrow JF; Kakiuchi F; Jacobsen EN
    Science; 1997 Aug; 277(5328):936-8. PubMed ID: 9252321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Baeyer-Villiger oxidation: desymmetrization of meso cyclic ketones and kinetic resolution of racemic 2-arylcyclohexanones.
    Zhou L; Liu X; Ji J; Zhang Y; Hu X; Lin L; Feng X
    J Am Chem Soc; 2012 Oct; 134(41):17023-6. PubMed ID: 23020516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols.
    Gais HJ; Jagusch T; Spalthoff N; Gerhards F; Frank M; Raabe G
    Chemistry; 2003 Sep; 9(17):4202-21. PubMed ID: 12953206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids.
    Kreituss I; Bode JW
    Acc Chem Res; 2016 Dec; 49(12):2807-2821. PubMed ID: 27936682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic processes in the copper-catalyzed substitution of chiral allylic acetates leading to loss of chiral information.
    Norinder J; Bäckvall JE
    Chemistry; 2007; 13(14):4094-102. PubMed ID: 17309081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-controlled bidirectional enantioselectivity in a dynamic catalyst for asymmetric hydrogenation.
    Storch G; Trapp O
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3580-6. PubMed ID: 25708097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.