These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27993020)

  • 1. Numerical Study of the Electrothermal Effect on the Kinetic Reaction of Immunoassays for a Microfluidic Biosensor.
    Selmi M; Gazzah MH; Belmabrouk H
    Langmuir; 2016 Dec; 32(50):13305-13312. PubMed ID: 27993020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Temperature-Jump Boundary Conditions on Heat Transfer for Heterogeneous Microfluidic Immunosensors.
    Echouchene F; Al-Shahrani T; Belmabrouk H
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of COVID-19 detection time by means of electrothermal force.
    Kaziz S; Saad Y; Bouzid M; Selmi M; Belmabrouk H
    Microfluid Nanofluidics; 2021; 25(10):86. PubMed ID: 34548854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrothermal stirring for heterogeneous immunoassays.
    Sigurdson M; Wang D; Meinhart CD
    Lab Chip; 2005 Dec; 5(12):1366-73. PubMed ID: 16286967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AC Electroosmosis Effect on Microfluidic Heterogeneous Immunoassay Efficiency.
    Selmi M; Belmabrouk H
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32218325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. application to immunoassays on planar optical waveguides.
    Hofmann O; Voirin G; Niedermann P; Manz A
    Anal Chem; 2002 Oct; 74(20):5243-50. PubMed ID: 12403577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering.
    Selmi M; Gazzah MH; Belmabrouk H
    Sci Rep; 2017 Jul; 7(1):5721. PubMed ID: 28720856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design parameters optimization of an electrothermal flow biosensor for the SARS-CoV-2 S protein immunoassay.
    Kaziz S; Ben Mariem I; Echouchene F; Gazzah MH; Belmabrouk H
    Indian J Phys Proc Indian Assoc Cultiv Sci (2004); 2022; 96(14):4091-4101. PubMed ID: 35463477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D simulation of microfluidic biosensor for SARS-CoV-2 S protein binding kinetics using new reaction surface design.
    Kaziz S; Saad Y; Gazzah MH; Belmabrouk H
    Eur Phys J Plus; 2022; 137(2):241. PubMed ID: 35194535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor.
    Koklu A; Giuliani J; Monton C; Beskok A
    Anal Chem; 2020 Jun; 92(11):7762-7769. PubMed ID: 32362110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip.
    Hu G; Gao Y; Li D
    Biosens Bioelectron; 2007 Feb; 22(7):1403-9. PubMed ID: 16879959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.
    Ren Q
    Electrophoresis; 2018 Jun; 39(11):1329-1338. PubMed ID: 29427440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Numerical Investigation of Enhancing Microfluidic Heterogeneous Immunoassay on Bipolar Electrodes Driven by Induced-Charge Electroosmosis in Rotating Electric Fields.
    Ge Z; Yan H; Liu W; Song C; Xue R; Ren Y
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.
    Lebedev K; Mafé S; Stroeve P
    J Colloid Interface Sci; 2006 Apr; 296(2):527-37. PubMed ID: 16359694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method.
    Mautner T
    Biosens Bioelectron; 2004 Jun; 19(11):1409-19. PubMed ID: 15093212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient AC electrothermal flow (ACET) on-chip for enhanced immunoassays.
    Draz MS; Uning K; Dupouy D; Gijs MAM
    Lab Chip; 2023 Mar; 23(6):1637-1648. PubMed ID: 36644814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic integrated capacitive biosensor for C-reactive protein label-free and real-time detection.
    Liu D; Zhou L; Huang L; Zuo Z; Ho V; Jin L; Lu Y; Chen X; Zhao J; Qian D; Liu H; Mao H
    Analyst; 2021 Sep; 146(17):5380-5388. PubMed ID: 34338259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.