BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27993034)

  • 1. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors.
    Lo JC; Letinski DJ; Parkerton TF; Campbell DA; Gobas FA
    Environ Sci Technol; 2016 Dec; 50(24):13299-13308. PubMed ID: 27993034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic and gastrointestinal in vivo biotransformation rates of hydrophobic chemicals in fish.
    Lo JC; Campbell DA; Kennedy CJ; Gobas FA
    Environ Toxicol Chem; 2015 Oct; 34(10):2282-94. PubMed ID: 25939596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Toxicokinetic Framework and Analysis Tool for Interpreting Organisation for Economic Co-operation and Development Guideline 305 Dietary Bioaccumulation Tests.
    Gobas FAPC; Lee YS; Lo JC; Parkerton TF; Letinski DJ
    Environ Toxicol Chem; 2020 Jan; 39(1):171-188. PubMed ID: 31546284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro biotransformation of surfactants in fish. Part II--Alcohol ethoxylate (C16EO8) and alcohol ethoxylate sulfate (C14EO2S) to estimate bioconcentration potential.
    Dyer SD; Bernhard MJ; Cowan-Ellsberry C; Perdu-Durand E; Demmerle S; Cravedi JP
    Chemosphere; 2009 Aug; 76(7):989-98. PubMed ID: 19433333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.
    Papa E; van der Wal L; Arnot JA; Gramatica P
    Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Sep; 32(9):2089-99. PubMed ID: 23703865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.
    Lee YS; Lo JC; Otton SV; Moore MM; Kennedy CJ; Gobas FAPC
    Environ Toxicol Chem; 2017 Jul; 36(7):1934-1946. PubMed ID: 28000964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary Bioaccumulation and Biotransformation of Hydrophobic Organic Sunscreen Agents in Rainbow Trout.
    Saunders LJ; Hoffman AD; Nichols JW; Gobas FAPC
    Environ Toxicol Chem; 2020 Mar; 39(3):574-586. PubMed ID: 31749247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish.
    Armitage JM; Arnot JA; Wania F; Mackay D
    Environ Toxicol Chem; 2013 Jan; 32(1):115-28. PubMed ID: 23023933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective.
    Mackay D; Celsie AKD; Powell DE; Parnis JM
    Environ Sci Process Impacts; 2018 Jan; 20(1):72-85. PubMed ID: 29260171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the Bioconcentration Factors of Hydrophobic Organic Compounds from Biotransformation Rates Using Rainbow Trout Hepatocytes.
    Trowell JJ; Gobas FAPC; Moore MM; Kennedy CJ
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):295-305. PubMed ID: 29550936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical relationships between metrics of chemical bioaccumulation in fish.
    Mackay D; Arnot JA; Gobas FA; Powell DE
    Environ Toxicol Chem; 2013 Jul; 32(7):1459-66. PubMed ID: 23440888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting the bioaccumulation patterns of chemicals through data-driven approaches.
    Grisoni F; Consonni V; Vighi M
    Chemosphere; 2018 Oct; 208():273-284. PubMed ID: 29879561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can solid-phase microextraction replace solvent extraction for water analysis in fish bioconcentration studies with highly hydrophobic organic chemicals?
    Böhm L; Düring RA; Bruckert HJ; Schlechtriem C
    Environ Toxicol Chem; 2017 Nov; 36(11):2887-2894. PubMed ID: 28488290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of bioaccumulation data for hexachlorobenzene to derive water quality standards according to the EU-WFD methodology.
    Moermond CT; Verbruggen EM
    Integr Environ Assess Manag; 2013 Jan; 9(1):87-97. PubMed ID: 22791265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A database of fish biotransformation rates for organic chemicals.
    Arnot JA; Mackay D; Parkerton TE; Bonnell M
    Environ Toxicol Chem; 2008 Nov; 27(11):2263-70. PubMed ID: 18522452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Aug; 32(8):1873-81. PubMed ID: 23625748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for predicting the rate constant for uptake of organic chemicals from water by fish.
    Brooke DN; Crookes MJ; Merckel DA
    Environ Toxicol Chem; 2012 Nov; 31(11):2465-71. PubMed ID: 22865682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of chemical degradation during dietary exposures to fish on biomagnification factors and bioaccumulation factors.
    Arnot JA; Mackay D
    Environ Sci Process Impacts; 2018 Jan; 20(1):86-97. PubMed ID: 29300412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of a database of dietary bioaccumulation test data for organic chemicals in fish.
    Arnot JA; Quinn CL
    Environ Sci Technol; 2015 Apr; 49(8):4783-96. PubMed ID: 25821900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.