BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 27993177)

  • 1. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk.
    Bergeron N; Williams PT; Lamendella R; Faghihnia N; Grube A; Li X; Wang Z; Knight R; Jansson JK; Hazen SL; Krauss RM
    Br J Nutr; 2016 Dec; 116(12):2020-2029. PubMed ID: 27993177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Paleolithic diet lowers resistant starch intake but does not affect serum trimethylamine-N-oxide concentrations in healthy women.
    Genoni A; Lo J; Lyons-Wall P; Boyce MC; Christophersen CT; Bird A; Devine A
    Br J Nutr; 2019 Feb; 121(3):322-329. PubMed ID: 30419974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study.
    Fu BC; Hullar MAJ; Randolph TW; Franke AA; Monroe KR; Cheng I; Wilkens LR; Shepherd JA; Madeleine MM; Le Marchand L; Lim U; Lampe JW
    Am J Clin Nutr; 2020 Jun; 111(6):1226-1234. PubMed ID: 32055828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circulating Gut Microbiota Metabolite Trimethylamine N-Oxide (TMAO) and Changes in Bone Density in Response to Weight Loss Diets: The POUNDS Lost Trial.
    Zhou T; Heianza Y; Chen Y; Li X; Sun D; DiDonato JA; Pei X; LeBoff MS; Bray GA; Sacks FM; Qi L
    Diabetes Care; 2019 Aug; 42(8):1365-1371. PubMed ID: 31332027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women.
    Zhu C; Sawrey-Kubicek L; Bardagjy AS; Houts H; Tang X; Sacchi R; Randolph JM; Steinberg FM; Zivkovic AM
    Nutr Res; 2020 Jun; 78():36-41. PubMed ID: 32464420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers.
    Park JE; Miller M; Rhyne J; Wang Z; Hazen SL
    Nutr Metab Cardiovasc Dis; 2019 May; 29(5):513-517. PubMed ID: 30940489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial.
    Heianza Y; Sun D; Li X; DiDonato JA; Bray GA; Sacks FM; Qi L
    Gut; 2019 Feb; 68(2):263-270. PubMed ID: 29860242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO).
    Mitchell SM; Milan AM; Mitchell CJ; Gillies NA; D'Souza RF; Zeng N; Ramzan F; Sharma P; Knowles SO; Roy NC; Sjödin A; Wagner KH; Zeisel SH; Cameron-Smith D
    Nutrients; 2019 Sep; 11(9):. PubMed ID: 31547446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The Cardiovascular Health Study.
    Lemaitre RN; Jensen PN; Wang Z; Fretts AM; McKnight B; Nemet I; Biggs ML; Sotoodehnia N; de Oliveira Otto MC; Psaty BM; Siscovick DS; Hazen SL; Mozaffarian D
    JAMA Netw Open; 2021 Aug; 4(8):e2122844. PubMed ID: 34448864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary factors, gut microbiota, and serum trimethylamine-N-oxide associated with cardiovascular disease in the Hispanic Community Health Study/Study of Latinos.
    Mei Z; Chen GC; Wang Z; Usyk M; Yu B; Baeza YV; Humphrey G; Benitez RS; Li J; Williams-Nguyen JS; Daviglus ML; Hou L; Cai J; Zheng Y; Knight R; Burk RD; Boerwinkle E; Kaplan RC; Qi Q
    Am J Clin Nutr; 2021 Jun; 113(6):1503-1514. PubMed ID: 33709132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome.
    Eyupoglu ND; Caliskan Guzelce E; Acikgoz A; Uyanik E; Bjørndal B; Berge RK; Svardal A; Yildiz BO
    Clin Endocrinol (Oxf); 2019 Dec; 91(6):810-815. PubMed ID: 31556132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans.
    Boutagy NE; Neilson AP; Osterberg KL; Smithson AT; Englund TR; Davy BM; Hulver MW; Davy KP
    Nutr Res; 2015 Oct; 35(10):858-864. PubMed ID: 26265295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery.
    Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT
    Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch.
    Barouei J; Bendiks Z; Martinic A; Mishchuk D; Heeney D; Hsieh YH; Kieffer D; Zaragoza J; Martin R; Slupsky C; Marco ML
    Mol Nutr Food Res; 2017 Nov; 61(11):. PubMed ID: 28736992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women.
    Wang Z; Bergeron N; Levison BS; Li XS; Chiu S; Jia X; Koeth RA; Li L; Wu Y; Tang WHW; Krauss RM; Hazen SL
    Eur Heart J; 2019 Feb; 40(7):583-594. PubMed ID: 30535398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fasting and postprandial trimethylamine N-oxide in sedentary and endurance-trained males following a short-term high-fat diet.
    Steele CN; Baugh ME; Griffin LE; Neilson AP; Davy BM; Hulver MW; Davy KP
    Physiol Rep; 2021 Aug; 9(16):e14970. PubMed ID: 34405585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice.
    Wu WK; Chen CC; Liu PY; Panyod S; Liao BY; Chen PC; Kao HL; Kuo HC; Kuo CH; Chiu THT; Chen RA; Chuang HL; Huang YT; Zou HB; Hsu CC; Chang TY; Lin CL; Ho CT; Yu HT; Sheen LY; Wu MS
    Gut; 2019 Aug; 68(8):1439-1449. PubMed ID: 30377191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency.
    Macpherson ME; Hov JR; Ueland T; Dahl TB; Kummen M; Otterdal K; Holm K; Berge RK; Mollnes TE; Trøseid M; Halvorsen B; Aukrust P; Fevang B; Jørgensen SF
    Front Immunol; 2020; 11():574500. PubMed ID: 33042155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-
    Cho CE; Aardema NDJ; Bunnell ML; Larson DP; Aguilar SS; Bergeson JR; Malysheva OV; Caudill MA; Lefevre M
    Nutrients; 2020 Jul; 12(8):. PubMed ID: 32722424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats.
    Bielinska K; Radkowski M; Grochowska M; Perlejewski K; Huc T; Jaworska K; Motooka D; Nakamura S; Ufnal M
    Nutrition; 2018 Oct; 54():33-39. PubMed ID: 29705499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.