These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27993191)

  • 21. Light Intensity and Photoperiod Affect Growth and Nutritional Quality of Brassica Microgreens.
    Liu K; Gao M; Jiang H; Ou S; Li X; He R; Li Y; Liu H
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LED Lighting Strategies Affect Physiology and Resilience to Pathogens and Pests in Eggplant (
    Anja Dieleman J; Marjolein Kruidhof H; Weerheim K; Leiss K
    Front Plant Sci; 2020; 11():610046. PubMed ID: 33519863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting.
    Brown CS; Schuerger AC; Sager JC
    J Am Soc Hortic Sci; 1995 Sep; 120(5):808-13. PubMed ID: 11540133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Side Lighting Enhances Morphophysiology by Inducing More Branching and Flowering in Chrysanthemum Grown in Controlled Environment.
    Yang J; Jeong BR
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization and control of the light environment for greenhouse crop production.
    Xin P; Li B; Zhang H; Hu J
    Sci Rep; 2019 Jun; 9(1):8650. PubMed ID: 31209246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.
    Schuerger AC; Brown CS; Stryjewski EC
    Ann Bot; 1997 Mar; 79(3):273-82. PubMed ID: 11540425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supplemental LED inter-lighting compensates for a shortage of light for plant growth and yield under the lack of sunshine.
    Tewolde FT; Shiina K; Maruo T; Takagaki M; Kozai T; Yamori W
    PLoS One; 2018; 13(11):e0206592. PubMed ID: 30383825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth, Flowering, and Fruit Production of Strawberry 'Albion' in Response to Photoperiod and Photosynthetic Photon Flux Density of Sole-Source Lighting.
    Park Y; Sethi R; Temnyk S
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LEDs Make It Resilient: Effects on Plant Growth and Defense.
    Lazzarin M; Meisenburg M; Meijer D; van Ieperen W; Marcelis LFM; Kappers IF; van der Krol AR; van Loon JJA; Dicke M
    Trends Plant Sci; 2021 May; 26(5):496-508. PubMed ID: 33358304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of Basil Growth and Morphology to Light Intensity and Spectrum in a Vertical Farm.
    Larsen DH; Woltering EJ; Nicole CCS; Marcelis LFM
    Front Plant Sci; 2020; 11():597906. PubMed ID: 33424894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of time and intensity of supplemental blue lighting during morning twilight on growth and physiological performance of cucumber seedlings.
    Sung IK; Kiyota M; Hirano T
    Life Support Biosph Sci; 1998; 5(2):137-42. PubMed ID: 11541669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center.
    Kim HH; Wheeler RM; Sager JC; Yorio NC; Goins GD
    Habitation (Elmsford); 2005; 10(2):71-8. PubMed ID: 15751143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light.
    Jishi T; Matsuda R; Fujiwara K
    Photosynth Res; 2015 Apr; 124(1):107-16. PubMed ID: 25736464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seasonal Efficiency of Supplemental LED Lighting on Growth and Photomorphogenesis of Sweet Basil.
    Solbach JA; Fricke A; Stützel H
    Front Plant Sci; 2021; 12():609975. PubMed ID: 33889161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photosynthetic Photon Flux Density Effects on
    Kudirka G; Viršilė A; Laužikė K; Sutulienė R; Samuolienė G
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Overview of LEDs' Effects on the Production of Bioactive Compounds and Crop Quality.
    Hasan MM; Bashir T; Ghosh R; Lee SK; Bae H
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28846620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Life cycle experiments with Arabidopsis grown under red light-emitting diodes (LEDs).
    Goins GD; Yorio NC; Sanwo-Lewandowski MM; Brown CS
    Life Support Biosph Sci; 1998; 5(2):143-9. PubMed ID: 11541670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution.
    Lu N; Bernardo EL; Tippayadarapanich C; Takagaki M; Kagawa N; Yamori W
    Front Plant Sci; 2017; 8():708. PubMed ID: 28523012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracanopy lighting reduces electrical energy utilization by closed cowpea stands.
    Frantz JM; Joly RJ; Mitchell CA
    Life Support Biosph Sci; 2001; 7(4):283-90. PubMed ID: 11676456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracanopy lighting of cowpea canopies in controlled environments.
    Frantz JM; Chun C; Joly RJ; Mitchell CA
    Life Support Biosph Sci; 1998; 5(2):183-9. PubMed ID: 11541675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.