BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27993657)

  • 1. Genome analysis of Chlamydia trachomatis for functional characterization of hypothetical proteins to discover novel drug targets.
    Turab Naqvi AA; Rahman S; Rubi ; Zeya F; Kumar K; Choudhary H; Jamal MS; Kim J; Hassan MI
    Int J Biol Macromol; 2017 Mar; 96():234-240. PubMed ID: 27993657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains.
    Carlson JH; Porcella SF; McClarty G; Caldwell HD
    Infect Immun; 2005 Oct; 73(10):6407-18. PubMed ID: 16177312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomes of Chlamydia pneumoniae and C. trachomatis.
    Kalman S; Mitchell W; Marathe R; Lammel C; Fan J; Hyman RW; Olinger L; Grimwood J; Davis RW; Stephens RS
    Nat Genet; 1999 Apr; 21(4):385-9. PubMed ID: 10192388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shotgun proteomic analysis of Chlamydia trachomatis.
    Skipp P; Robinson J; O'Connor CD; Clarke IN
    Proteomics; 2005 Apr; 5(6):1558-73. PubMed ID: 15838905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro antichlamydial activity of garenoxacin against Chlamydia trachomatis.
    Futakuchi N; Nakatani M; Takahata M; Mitsuyama J
    J Infect Chemother; 2012 Aug; 18(4):428-35. PubMed ID: 22113367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence Analysis of Hypothetical Proteins from
    Naqvi AA; Anjum F; Khan FI; Islam A; Ahmad F; Hassan MI
    Genomics Inform; 2016 Sep; 14(3):125-135. PubMed ID: 27729842
    [No Abstract]   [Full Text] [Related]  

  • 7. TargeTron inactivation of plasmid-regulated Chlamydia trachomatis CT084 results in a nonlytic phenotype.
    Karanovic U; Lei L; Martens CA; Barbian K; McClarty G; Caldwell HD; Yang C
    Pathog Dis; 2023 Jan; 81():. PubMed ID: 37804183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance.
    da Costa WLO; Araújo CLA; Dias LM; Pereira LCS; Alves JTC; Araújo FA; Folador EL; Henriques I; Silva A; Folador ARC
    PLoS One; 2018; 13(6):e0198965. PubMed ID: 29940001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Localization of the hypothetical protein CT249 in the Chlamydia trachomatis inclusion membrane].
    Jia TJ; Liu DW; Luo JH; Zhong GM
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):645-8. PubMed ID: 17944365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico scrutiny of genes revealing phylogenetic congruence with clinical prevalence or tropism properties of Chlamydia trachomatis strains.
    Ferreira R; Antelo M; Nunes A; Borges V; Damião V; Borrego MJ; Gomes JP
    G3 (Bethesda); 2014 Nov; 5(1):9-19. PubMed ID: 25378473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis.
    Naveed M; Makhdoom SI; Abbas G; Safdari M; Farhadi A; Habtemariam S; Shabbir MA; Jabeen K; Asif MF; Tehreem S
    Mini Rev Med Chem; 2022; 22(20):2608-2623. PubMed ID: 35422211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and evaluation of a combination of chlamydial antigens to support the diagnosis of severe and invasive Chlamydia trachomatis infections.
    Forsbach-Birk V; Simnacher U; Pfrepper KI; Soutschek E; Kiselev AO; Lampe MF; Meyer T; Straube E; Essig A
    Clin Microbiol Infect; 2010 Aug; 16(8):1237-44. PubMed ID: 19723133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and characterization of the hypothetical protein CT440 in Chlamydia trachomatis-infected cells.
    Li Z; Huang Q; Su S; Zhou Z; Chen C; Zhong G; Wu Y
    Sci China Life Sci; 2011 Nov; 54(11):1048-54. PubMed ID: 22173312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel overlapping coding sequences in Chlamydia trachomatis.
    Jensen KT; Petersen L; Falk S; Iversen P; Andersen P; Theisen M; Krogh A
    FEMS Microbiol Lett; 2006 Dec; 265(1):106-17. PubMed ID: 17038047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biochemical characterization of Chlamydia trachomatis hypothetical protein CT263 supports that menaquinone synthesis occurs through the futalosine pathway.
    Barta ML; Thomas K; Yuan H; Lovell S; Battaile KP; Schramm VL; Hefty PS
    J Biol Chem; 2014 Nov; 289(46):32214-32229. PubMed ID: 25253688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis.
    Gauliard E; Ouellette SP; Rueden KJ; Ladant D
    Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the protein-coding gene content of Chlamydia trachomatis and Protochlamydia amoebophila using a Raspberry Pi computer.
    Robson JF; Barker D
    BMC Res Notes; 2015 Oct; 8():561. PubMed ID: 26462790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors.
    Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ
    Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029.
    Khan S; Shahbaaz M; Bisetty K; Ahmad F; Hassan MI
    Interdiscip Sci; 2017 Mar; 9(1):96-106. PubMed ID: 26649559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.