BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27993864)

  • 1. Studies on Behaviors of Interactions Between New Polymer-based ZIC-HILIC Stationary Phases and Carboxylic Acids.
    Rasheed AS; Al-Phalahy BA; Seubert A
    J Chromatogr Sci; 2017 Jan; 55(1):52-59. PubMed ID: 27993864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of inorganic anions using a series of sulfobetaine exchangers.
    Sonnenschein L; Seubert A
    J Chromatogr A; 2011 Feb; 1218(8):1185-94. PubMed ID: 21251664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography.
    Qiao L; Dou A; Shi X; Li H; Shan Y; Lu X; Xu G
    J Chromatogr A; 2013 Apr; 1286():137-45. PubMed ID: 23489487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of a novel hydrophilic interaction/ion exchange mixed-mode chromatographic stationary phase with pyridinium-based zwitterionic polymer-grafted porous silica.
    Takafuji M; Shahruzzaman M; Sasahara K; Ihara H
    J Sep Sci; 2018 Nov; 41(21):3957-3965. PubMed ID: 30136755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of arsenic species on zwitterionic stationary phase in hydrophilic interaction chromatography.
    Xie D; Mattusch J; Wennrich R
    J Sep Sci; 2010 Mar; 33(6-7):817-25. PubMed ID: 20222073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Column comparison and method development for the analysis of short-chain carboxylic acids by zwitterionic hydrophilic interaction liquid chromatography with UV detection.
    Marrubini G; Pedrali A; Hemström P; Jonsson T; Appelblad P; Massolini G
    J Sep Sci; 2013 Nov; 36(21-22):3493-502. PubMed ID: 24124031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of -amino acids using a series of zwitterionic sulfobetaine exchangers.
    Sonnenschein L; Seubert A
    J Chromatogr Sci; 2011 Sep; 49(8):589-95. PubMed ID: 21859531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary and mobile phases in hydrophilic interaction chromatography: a review.
    Jandera P
    Anal Chim Acta; 2011 Apr; 692(1-2):1-25. PubMed ID: 21501708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry.
    Xiong X; Liu Y
    Talanta; 2016 Apr; 150():493-502. PubMed ID: 26838435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography.
    Shen A; Li X; Dong X; Wei J; Guo Z; Liang X
    J Chromatogr A; 2013 Nov; 1314():63-9. PubMed ID: 24075460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds.
    Urban J; Skeríková V; Jandera P; Kubícková R; Pospísilová M
    J Sep Sci; 2009 Aug; 32(15-16):2530-43. PubMed ID: 19585529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography.
    Chirita RI; West C; Zubrzycki S; Finaru AL; Elfakir C
    J Chromatogr A; 2011 Sep; 1218(35):5939-63. PubMed ID: 21571288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and evaluation of sulfobetaine zwitterionic polymer bonded stationary phase.
    Yu D; Guo Z; Shen A; Yan J; Dong X; Jin G; Long Z; Liang L; Liang X
    Talanta; 2016 Dec; 161():860-866. PubMed ID: 27769494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide retention time prediction in hydrophilic interaction liquid chromatography: Zwitter-ionic sulfoalkylbetaine and phosphorylcholine stationary phases.
    Yeung D; Klaassen N; Mizero B; Spicer V; Krokhin OV
    J Chromatogr A; 2020 May; 1619():460909. PubMed ID: 32007221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of temperature and mobile phase on the retention of aliphatic carboxylic acids in hydrophilic interaction chromatography on zwitterionic stationary phases.
    Boháčová I; Halko R; Jandera P
    J Sep Sci; 2016 Dec; 39(24):4732-4739. PubMed ID: 27781395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconvoluting the effects of buffer salt concentration in hydrophilic interaction chromatography on a zwitterionic stationary phase.
    West C; Auroux E
    J Chromatogr A; 2016 Aug; 1461():92-7. PubMed ID: 27475992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxylate modified porous graphitic carbon: a new class of hydrophilic interaction liquid chromatography phases.
    Wahab MF; Ibrahim ME; Lucy CA
    Anal Chem; 2013 Jun; 85(12):5684-91. PubMed ID: 23701017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases.
    Kazarian AA; Taylor MR; Haddad PR; Nesterenko PN; Paull B
    Anal Chim Acta; 2013 Nov; 803():143-53. PubMed ID: 24216208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention Behavior of Inorganic Anions in Hydrophilic Interaction Chromatography.
    Takayama N; Lim LW; Takeuchi T
    Anal Sci; 2017; 33(5):619-625. PubMed ID: 28496067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed-mode chromatography with zwitterionic phosphopeptidomimetic selectors from Ugi multicomponent reaction.
    Gargano AF; Leek T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2013 Nov; 1317():12-21. PubMed ID: 23932032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.