BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

993 related articles for article (PubMed ID: 27993896)

  • 21. The Warburg effect: 80 years on.
    Potter M; Newport E; Morten KJ
    Biochem Soc Trans; 2016 Oct; 44(5):1499-1505. PubMed ID: 27911732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K.
    Courtnay R; Ngo DC; Malik N; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):841-51. PubMed ID: 25689954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Burkitt lymphoma and lactic acidosis: A case report and review of the literature.
    Looyens C; Giraud R; Neto Silva I; Bendjelid K
    Physiol Rep; 2021 Feb; 9(4):e14737. PubMed ID: 33611854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Warburg effect in Gynecologic cancers.
    Kobayashi Y; Banno K; Kunitomi H; Takahashi T; Takeda T; Nakamura K; Tsuji K; Tominaga E; Aoki D
    J Obstet Gynaecol Res; 2019 Mar; 45(3):542-548. PubMed ID: 30511455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).
    El Sayed SM; Mahmoud AA; El Sawy SA; Abdelaal EA; Fouad AM; Yousif RS; Hashim MS; Hemdan SB; Kadry ZM; Abdelmoaty MA; Gabr AG; Omran FM; Nabo MM; Ahmed NS
    Med Hypotheses; 2013 Nov; 81(5):866-70. PubMed ID: 24071366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Warburg effect and its role in tumourigenesis.
    Lebelo MT; Joubert AM; Visagie MH
    Arch Pharm Res; 2019 Oct; 42(10):833-847. PubMed ID: 31473944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.
    Benny S; Mishra R; Manojkumar MK; Aneesh TP
    Med Hypotheses; 2020 Nov; 144():110216. PubMed ID: 33254523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Warburg effect: a signature of mitochondrial overload.
    Wang Y; Patti GJ
    Trends Cell Biol; 2023 Dec; 33(12):1014-1020. PubMed ID: 37117116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revisiting lactate dynamics in cancer-a metabolic expertise or an alternative attempt to survive?
    Mendes C; Serpa J
    J Mol Med (Berl); 2020 Oct; 98(10):1397-1414. PubMed ID: 32827258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism.
    Bonuccelli G; Tsirigos A; Whitaker-Menezes D; Pavlides S; Pestell RG; Chiavarina B; Frank PG; Flomenberg N; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Sep; 9(17):3506-14. PubMed ID: 20818174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic symbiosis in cancer: refocusing the Warburg lens.
    Nakajima EC; Van Houten B
    Mol Carcinog; 2013 May; 52(5):329-37. PubMed ID: 22228080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
    Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming.
    de Bari L; Atlante A
    Cell Mol Life Sci; 2018 Aug; 75(15):2763-2776. PubMed ID: 29728715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypothesis: using the Warburg effect against cancer by reducing glucose and providing lactate.
    Nijsten MW; van Dam GM
    Med Hypotheses; 2009 Jul; 73(1):48-51. PubMed ID: 19264418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic phenotype of bladder cancer.
    Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R
    Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies.
    Mathupala SP; Ko YH; Pedersen PL
    Biochim Biophys Acta; 2010; 1797(6-7):1225-30. PubMed ID: 20381449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells.
    Smith B; Schafer XL; Ambeskovic A; Spencer CM; Land H; Munger J
    Cell Rep; 2016 Oct; 17(3):821-836. PubMed ID: 27732857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Science and Translation of Lactate Shuttle Theory.
    Brooks GA
    Cell Metab; 2018 Apr; 27(4):757-785. PubMed ID: 29617642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microscale mathematical model for metabolic symbiosis: Investigating the effects of metabolic inhibition on ATP turnover in tumors.
    Phipps C; Molavian H; Kohandel M
    J Theor Biol; 2015 Feb; 366():103-14. PubMed ID: 25433213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.