These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 27993950)
1. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope. Hata S; Miyazaki S; Gondo T; Kawamoto K; Horii N; Sato K; Furukawa H; Kudo H; Miyazaki H; Murayama M Microscopy (Oxf); 2017 Apr; 66(2):143-153. PubMed ID: 27993950 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Sato K; Miyazaki H; Gondo T; Miyazaki S; Murayama M; Hata S Microscopy (Oxf); 2015 Oct; 64(5):369-75. PubMed ID: 25904643 [TBL] [Abstract][Full Text] [Related]
3. Development of a three-dimensional tomography holder for in situ tensile deformation for soft materials. Higuchi T; Gondo T; Miyazaki H; Kumagai A; Akutagawa K; Jinnai H Microscopy (Oxf); 2018 Oct; 67(5):296-300. PubMed ID: 29893959 [TBL] [Abstract][Full Text] [Related]
4. A combined environmental straining specimen holder for high-voltage electron microscopy. Takahashi Y; Tanaka M; Higashida K; Yasuda K; Matsumura S; Noguchi H Ultramicroscopy; 2010 Oct; 110(11):1420-7. PubMed ID: 20696527 [TBL] [Abstract][Full Text] [Related]
5. In-situ heating-and-electron tomography for materials research: from 3D (in-situ 2D) to 4D (in-situ 3D). Hata S; Ihara S; Saito H; Murayama M Microscopy (Oxf); 2024 Apr; 73(2):133-144. PubMed ID: 38462986 [TBL] [Abstract][Full Text] [Related]
6. High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy. Hata S; Miyazaki H; Miyazaki S; Mitsuhara M; Tanaka M; Kaneko K; Higashida K; Ikeda K; Nakashima H; Matsumura S; Barnard JS; Sharp JH; Midgley PA Ultramicroscopy; 2011 Jul; 111(8):1168-75. PubMed ID: 21741918 [TBL] [Abstract][Full Text] [Related]
7. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope. Nishi R; Cao M; Kanaji A; Nishida T; Yoshida K; Isakozawa S Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i25. PubMed ID: 25359822 [TBL] [Abstract][Full Text] [Related]
8. An in situ nanoindentation specimen holder for a high voltage transmission electron microscope. Wall MA; Dahmen U Microsc Res Tech; 1998 Aug; 42(4):248-54. PubMed ID: 9779829 [TBL] [Abstract][Full Text] [Related]
9. Sample preparation toward seamless 3D imaging technique from micrometer to nanometer scale. Miyake A; Matsuno J; Toh S Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i24-i25. PubMed ID: 25359821 [TBL] [Abstract][Full Text] [Related]
10. A method for observing silver-stained osteocytes in situ in 3-microm sections using ultra-high voltage electron microscopy tomography. Kamioka H; Murshid SA; Ishihara Y; Kajimura N; Hasegawa T; Ando R; Sugawara Y; Yamashiro T; Takaoka A; Takano-Yamamoto T Microsc Microanal; 2009 Oct; 15(5):377-83. PubMed ID: 19709463 [TBL] [Abstract][Full Text] [Related]
11. Electron tomography imaging methods with diffraction contrast for materials research. Hata S; Furukawa H; Gondo T; Hirakami D; Horii N; Ikeda KI; Kawamoto K; Kimura K; Matsumura S; Mitsuhara M; Miyazaki H; Miyazaki S; Murayama MM; Nakashima H; Saito H; Sakamoto M; Yamasaki S Microscopy (Oxf); 2020 May; 69(3):141-155. PubMed ID: 32115659 [TBL] [Abstract][Full Text] [Related]
13. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Kobler A; Kashiwar A; Hahn H; Kübel C Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380 [TBL] [Abstract][Full Text] [Related]
14. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Grapes MD; LaGrange T; Friedman LH; Reed BW; Campbell GH; Weihs TP; LaVan DA Rev Sci Instrum; 2014 Aug; 85(8):084902. PubMed ID: 25173298 [TBL] [Abstract][Full Text] [Related]
15. 3D image reconstruction of fiber systems using electron tomography. Fakron OM; Field DP Ultramicroscopy; 2015 Feb; 149():21-5. PubMed ID: 25464156 [TBL] [Abstract][Full Text] [Related]
16. Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Weyland M; Midgley PA Microsc Microanal; 2003 Dec; 9(6):542-55. PubMed ID: 14750989 [TBL] [Abstract][Full Text] [Related]
17. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments. Voisin T; Grapes MD; Zhang Y; Lorenzo N; Ligda J; Schuster B; Weihs TP Ultramicroscopy; 2017 Apr; 175():1-8. PubMed ID: 28110178 [TBL] [Abstract][Full Text] [Related]
18. A cartridge-based turning specimen holder with wireless tilt angle measurement for magnetic induction mapping in the transmission electron microscope. Diehle P; Kovács A; Duden T; Speen R; Žagar Soderžnik K; Dunin-Borkowski RE Ultramicroscopy; 2021 Jan; 220():113098. PubMed ID: 33161222 [TBL] [Abstract][Full Text] [Related]
19. Direct Characterization of the Relation between the Mechanical Response and Microstructure Evolution in Aluminum by Transmission Electron Microscopy In Situ Straining. Ii S; Enami T; Ohmura T; Tsurekawa S Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33804269 [TBL] [Abstract][Full Text] [Related]
20. Advances in transmission electron microscopy: in situ straining and in situ compression experiments on metallic glasses. De Hosson JT Microsc Res Tech; 2009 Mar; 72(3):250-60. PubMed ID: 19189312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]