BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 27993970)

  • 1. Identification of a multifunctional docking site on the catalytic unit of phosphodiesterase-4 (PDE4) that is utilised by multiple interaction partners.
    Houslay KF; Christian F; MacLeod R; Adams DR; Houslay MD; Baillie GS
    Biochem J; 2017 Feb; 474(4):597-609. PubMed ID: 27993970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation.
    MacKenzie KF; Wallace DA; Hill EV; Anthony DF; Henderson DJ; Houslay DM; Arthur JS; Baillie GS; Houslay MD
    Biochem J; 2011 May; 435(3):755-69. PubMed ID: 21323643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways.
    Houslay MD; Baillie GS
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1186-90. PubMed ID: 14641023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between LIS1 and PDE4, and its role in cytoplasmic dynein function.
    Murdoch H; Vadrevu S; Prinz A; Dunlop AJ; Klussmann E; Bolger GB; Norman JC; Houslay MD
    J Cell Sci; 2011 Jul; 124(Pt 13):2253-66. PubMed ID: 21652625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimerization of cAMP phosphodiesterase-4 (PDE4) in living cells requires interfaces located in both the UCR1 and catalytic unit domains.
    Bolger GB; Dunlop AJ; Meng D; Day JP; Klussmann E; Baillie GS; Adams DR; Houslay MD
    Cell Signal; 2015 Apr; 27(4):756-69. PubMed ID: 25546709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK.
    Li X; Vadrevu S; Dunlop A; Day J; Advant N; Troeger J; Klussmann E; Jaffrey E; Hay RT; Adams DR; Houslay MD; Baillie GS
    Biochem J; 2010 Apr; 428(1):55-65. PubMed ID: 20196770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA).
    Collins DM; Murdoch H; Dunlop AJ; Charych E; Baillie GS; Wang Q; Herberg FW; Brandon N; Prinz A; Houslay MD
    Cell Signal; 2008 Dec; 20(12):2356-69. PubMed ID: 18845247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization.
    Houslay MD; Adams DR
    Biochem J; 2003 Feb; 370(Pt 1):1-18. PubMed ID: 12444918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s).
    Xie M; Blackman B; Scheitrum C; Mika D; Blanchard E; Lei T; Conti M; Richter W
    Biochem J; 2014 May; 459(3):539-50. PubMed ID: 24555506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1).
    MacKenzie SJ; Baillie GS; McPhee I; MacKenzie C; Seamons R; McSorley T; Millen J; Beard MB; van Heeke G; Houslay MD
    Br J Pharmacol; 2002 Jun; 136(3):421-33. PubMed ID: 12023945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5.
    Bolger GB; Baillie GS; Li X; Lynch MJ; Herzyk P; Mohamed A; Mitchell LH; McCahill A; Hundsrucker C; Klussmann E; Adams DR; Houslay MD
    Biochem J; 2006 Aug; 398(1):23-36. PubMed ID: 16689683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression.
    Sheppard CL; Lee LC; Hill EV; Henderson DJ; Anthony DF; Houslay DM; Yalla KC; Cairns LS; Dunlop AJ; Baillie GS; Huston E; Houslay MD
    Cell Signal; 2014 Sep; 26(9):1958-74. PubMed ID: 24815749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In addition to the SH3 binding region, multiple regions within the N-terminal noncatalytic portion of the cAMP-specific phosphodiesterase, PDE4A5, contribute to its intracellular targeting.
    Beard MB; Huston E; Campbell L; Gall I; McPhee I; Yarwood S; Scotland G; Houslay MD
    Cell Signal; 2002 May; 14(5):453-65. PubMed ID: 11882390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of extracellular signal-regulated kinase 2 mitogen-activated protein kinase phosphorylation and regulation of activity of PDE4 cyclic adenosine monophosphate-specific phosphodiesterases.
    Hill EV; Houslay MD; Baillie GS
    Methods Mol Biol; 2005; 307():225-37. PubMed ID: 15988067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy.
    Wang L; Burmeister BT; Johnson KR; Baillie GS; Karginov AV; Skidgel RA; O'Bryan JP; Carnegie GK
    Cell Signal; 2015 May; 27(5):908-22. PubMed ID: 25683917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis.
    Kaname T; Ki CS; Niikawa N; Baillie GS; Day JP; Yamamura K; Ohta T; Nishimura G; Mastuura N; Kim OH; Sohn YB; Kim HW; Cho SY; Ko AR; Lee JY; Kim HW; Ryu SH; Rhee H; Yang KS; Joo K; Lee J; Kim CH; Cho KH; Kim D; Yanagi K; Naritomi K; Yoshiura K; Kondoh T; Nii E; Tonoki H; Houslay MD; Jin DK
    Cell Signal; 2014 Nov; 26(11):2446-59. PubMed ID: 25064455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of cAMP-phosphodiesterase 4D7 (PDE4D7) is regulated by protein kinase A-dependent phosphorylation within its unique N-terminus.
    Byrne AM; Elliott C; Hoffmann R; Baillie GS
    FEBS Lett; 2015 Mar; 589(6):750-5. PubMed ID: 25680530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions.
    MacKenzie SJ; Baillie GS; McPhee I; Bolger GB; Houslay MD
    J Biol Chem; 2000 Jun; 275(22):16609-17. PubMed ID: 10828059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases.
    Baillie GS; MacKenzie SJ; McPhee I; Houslay MD
    Br J Pharmacol; 2000 Oct; 131(4):811-9. PubMed ID: 11030732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress employs phosphatidyl inositol 3-kinase and ERK signalling pathways to activate cAMP phosphodiesterase-4D3 (PDE4D3) through multi-site phosphorylation at Ser239 and Ser579.
    Hill EV; Sheppard CL; Cheung YF; Gall I; Krause E; Houslay MD
    Cell Signal; 2006 Nov; 18(11):2056-69. PubMed ID: 16973330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.