BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27994034)

  • 41. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences.
    Cilli P; Minoprio A; Bossa C; Bignami M; Mazzei F
    J Biol Chem; 2015 Oct; 290(43):26259-69. PubMed ID: 26338705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of 8-oxoguanine and abasic site DNA lesions on in vitro elongation by human DNA polymerase in the presence of replication protein A and proliferating-cell nuclear antigen.
    Locatelli GA; Pospiech H; Tanguy Le Gac N; van Loon B; Hubscher U; Parkkinen S; Syväoja JE; Villani G
    Biochem J; 2010 Aug; 429(3):573-82. PubMed ID: 20528769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.
    Yang J; Wang R; Liu B; Xue Q; Zhong M; Zeng H; Zhang H
    Mutat Res; 2015 Sep; 779():134-43. PubMed ID: 26203649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ribonucleotides as nucleotide excision repair substrates.
    Cai Y; Geacintov NE; Broyde S
    DNA Repair (Amst); 2014 Jan; 13():55-60. PubMed ID: 24290807
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2.
    Malfatti MC; Balachander S; Antoniali G; Koh KD; Saint-Pierre C; Gasparutto D; Chon H; Crouch RJ; Storici F; Tell G
    Nucleic Acids Res; 2017 Nov; 45(19):11193-11212. PubMed ID: 28977421
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNase H2-initiated ribonucleotide excision repair.
    Sparks JL; Chon H; Cerritelli SM; Kunkel TA; Johansson E; Crouch RJ; Burgers PM
    Mol Cell; 2012 Sep; 47(6):980-6. PubMed ID: 22864116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro.
    Bassett E; Vaisman A; Havener JM; Masutani C; Hanaoka F; Chaney SG
    Biochemistry; 2003 Dec; 42(48):14197-206. PubMed ID: 14640687
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of Three Human POLH Germline Variants Defective in Complementing the UV- and Cisplatin-Sensitivity of POLH-Deficient Cells.
    Yeom M; Hong JK; Shin JH; Lee Y; Guengerich FP; Choi JY
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inefficient bypass of an abasic site by DNA polymerase eta.
    Haracska L; Washington MT; Prakash S; Prakash L
    J Biol Chem; 2001 Mar; 276(9):6861-6. PubMed ID: 11106652
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficiency, specificity and DNA polymerase-dependence of translesion replication across the oxidative DNA lesion 8-oxoguanine in human cells.
    Avkin S; Livneh Z
    Mutat Res; 2002 Dec; 510(1-2):81-90. PubMed ID: 12459445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Translesion DNA synthesis by yeast DNA polymerase eta on templates containing N2-guanine adducts of 1,3-butadiene metabolites.
    Minko IG; Washington MT; Prakash L; Prakash S; Lloyd RS
    J Biol Chem; 2001 Jan; 276(4):2517-22. PubMed ID: 11062246
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.
    Su Y; Egli M; Guengerich FP
    J Biol Chem; 2016 Feb; 291(8):3747-56. PubMed ID: 26740629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA polymerase beta can incorporate ribonucleotides during DNA synthesis of undamaged and CPD-damaged DNA.
    Bergoglio V; Ferrari E; Hübscher U; Cazaux C; Hoffmann JS
    J Mol Biol; 2003 Aug; 331(5):1017-23. PubMed ID: 12927538
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells.
    Lerner LK; Francisco G; Soltys DT; Rocha CR; Quinet A; Vessoni AT; Castro LP; David TI; Bustos SO; Strauss BE; Gottifredi V; Stary A; Sarasin A; Chammas R; Menck CF
    Nucleic Acids Res; 2017 Feb; 45(3):1270-1280. PubMed ID: 28180309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Primer terminal ribonucleotide alters the active site dynamics of DNA polymerase η and reduces DNA synthesis fidelity.
    Chang C; Lee Luo C; Eleraky S; Lin A; Zhou G; Gao Y
    J Biol Chem; 2023 Mar; 299(3):102938. PubMed ID: 36702254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of oxidative DNA damage repair: the adenine:8-oxo-guanine problem.
    Markkanen E; Hübscher U; van Loon B
    Cell Cycle; 2012 Mar; 11(6):1070-5. PubMed ID: 22370481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1.
    Dyson OF; Pagano JS; Whitehurst CB
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28724765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha.
    Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC
    Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The use of modified and non-natural nucleotides provide unique insights into pro-mutagenic replication catalyzed by polymerase eta.
    Choi JS; Dasari A; Hu P; Benkovic SJ; Berdis AJ
    Nucleic Acids Res; 2016 Feb; 44(3):1022-35. PubMed ID: 26717984
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human DNA polymerase eta activity and translocation is regulated by phosphorylation.
    Chen YW; Cleaver JE; Hatahet Z; Honkanen RE; Chang JY; Yen Y; Chou KM
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16578-83. PubMed ID: 18946034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.