BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 27994045)

  • 1. Effects of activation on the elastic properties of intact soleus muscles with a deletion in titin.
    Monroy JA; Powers KL; Pace CM; Uyeno T; Nishikawa KC
    J Exp Biol; 2017 Mar; 220(Pt 5):828-836. PubMed ID: 27994045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titin-based contribution to shortening velocity of rabbit skeletal myofibrils.
    Minajeva A; Neagoe C; Kulke M; Linke WA
    J Physiol; 2002 Apr; 540(Pt 1):177-88. PubMed ID: 11927678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deleting Titin's C-Terminal PEVK Exons Increases Passive Stiffness, Alters Splicing, and Induces Cross-Sectional and Longitudinal Hypertrophy in Skeletal Muscle.
    van der Pijl RJ; Hudson B; Granzier-Nakajima T; Li F; Knottnerus AM; Smith J; Chung CS; Gotthardt M; Granzier HL; Ottenheijm CAC
    Front Physiol; 2020; 11():494. PubMed ID: 32547410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation.
    Heidlauf T; Klotz T; Rode C; Siebert T; Röhrle O
    PLoS Comput Biol; 2017 Oct; 13(10):e1005773. PubMed ID: 28968385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle fibers bear a larger fraction of passive muscle tension in frogs compared with mice.
    Meyer G; Lieber RL
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30237238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein.
    Hessel AL; Lindstedt SL; Nishikawa KC
    Front Physiol; 2017; 8():70. PubMed ID: 28232805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ANKRD1 expression is aberrantly upregulated in the mdm mouse model of muscular dystrophy and induced by stretch through NFκB.
    Lopez MA; Pardo PS; Mohamed JS; Boriek AM
    J Muscle Res Cell Motil; 2024 Apr; ():. PubMed ID: 38683293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titin takes centerstage among cytoskeletal contributions to myocardial passive stiffness.
    Loescher CM; Linke WA
    Cytoskeleton (Hoboken); 2024; 81(2-3):184-187. PubMed ID: 38158587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titin-based mechanosensing modulates muscle hypertrophy.
    van der Pijl R; Strom J; Conijn S; Lindqvist J; Labeit S; Granzier H; Ottenheijm C
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):947-961. PubMed ID: 29978560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titin-Based Force Modulates Cardiac Thick and Thin Filaments.
    Hessel AL; Kuehn MN; Engels NM; Nissen DL; Freundt JK; Ma W; Irving TC; Linke WA
    Circ Res; 2024 Apr; 134(8):1026-1028. PubMed ID: 38482667
    [No Abstract]   [Full Text] [Related]  

  • 11. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues.
    Rivas-Pardo JA; Li Y; Mártonfalvi Z; Tapia-Rojo R; Unger A; Fernández-Trasancos Á; Herrero-Galán E; Velázquez-Carreras D; Fernández JM; Linke WA; Alegre-Cebollada J
    Nat Commun; 2020 Apr; 11(1):2060. PubMed ID: 32345978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and structural basis of the passive mechanical properties of whole skeletal muscle.
    Lieber RL; Binder-Markey BI
    J Physiol; 2021 Aug; 599(16):3809-3823. PubMed ID: 34101193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Function relationships in the skeletal muscle extracellular matrix.
    Lieber RL; Meyer G
    J Biomech; 2023 May; 152():111593. PubMed ID: 37099932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titin Truncating Variants in Dilated Cardiomyopathy - Prevalence and Genotype-Phenotype Correlations.
    Franaszczyk M; Chmielewski P; Truszkowska G; Stawinski P; Michalak E; Rydzanicz M; Sobieszczanska-Malek M; Pollak A; Szczygieł J; Kosinska J; Parulski A; Stoklosa T; Tarnowska A; Machnicki MM; Foss-Nieradko B; Szperl M; Sioma A; Kusmierczyk M; Grzybowski J; Zielinski T; Ploski R; Bilinska ZT
    PLoS One; 2017; 12(1):e0169007. PubMed ID: 28045975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual force enhancement is regulated by titin in skeletal and cardiac myofibrils.
    Shalabi N; Cornachione A; de Souza Leite F; Vengallatore S; Rassier DE
    J Physiol; 2017 Mar; 595(6):2085-2098. PubMed ID: 28028799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for multi-scale power amplification in skeletal muscle.
    Petersen JC; Roberts TJ
    J Exp Biol; 2023 Nov; 226(21):. PubMed ID: 37767690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of shortening velocity on the stiffness to force ratio during isometric force redevelopment suggest mechanisms of residual force depression.
    Jeong S; Nishikawa K
    Sci Rep; 2023 Jan; 13(1):948. PubMed ID: 36653512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic profiles of muscular dystrophy with myositis (mdm) in extensor digitorum longus, psoas, and soleus muscles from mice.
    Hettige P; Tahir U; Nishikawa KC; Gage MJ
    BMC Genomics; 2022 Sep; 23(1):657. PubMed ID: 36115951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems.
    Cook A; Pandhigunta K; Acevedo MA; Walker A; Didcock RL; Castro JT; O'Neill D; Acharya R; Bhamla MS; Anderson PSL; Ilton M
    Integr Org Biol; 2022; 4(1):obac032. PubMed ID: 36060863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of Titin and Collagen to Passive Stress in Muscles from
    Hettige P; Mishra D; Granzier H; Nishikawa K; Gage MJ
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.