BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27994254)

  • 1. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities.
    Bhagi-Damodaran A; Petrik I; Lu Y
    Isr J Chem; 2016 Oct; 56():773-790. PubMed ID: 27994254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase.
    Bhagi-Damodaran A; Reed JH; Zhu Q; Shi Y; Hosseinzadeh P; Sandoval BA; Harnden KA; Wang S; Sponholtz MR; Mirts EN; Dwaraknath S; Zhang Y; Moënne-Loccoz P; Lu Y
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6195-6200. PubMed ID: 29802230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies.
    Chakraborty S; Reed J; Sage JT; Branagan NC; Petrik ID; Miner KD; Hu MY; Zhao J; Alp EE; Lu Y
    Inorg Chem; 2015 Oct; 54(19):9317-29. PubMed ID: 26274098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural and functional perspective on the evolution of the heme-copper oxidases.
    Sharma V; Wikström M
    FEBS Lett; 2014 Nov; 588(21):3787-92. PubMed ID: 25261254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired heme, heme/nonheme diiron, heme/copper, and inorganic NOx chemistry: *NO((g)) oxidation, peroxynitrite-metal chemistry, and *NO((g)) reductive coupling.
    Schopfer MP; Wang J; Karlin KD
    Inorg Chem; 2010 Jul; 49(14):6267-82. PubMed ID: 20666386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
    Sabuncu S; Reed JH; Lu Y; Moënne-Loccoz P
    J Am Chem Soc; 2018 Dec; 140(50):17389-17393. PubMed ID: 30512937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
    Zumft WG
    J Inorg Biochem; 2005 Jan; 99(1):194-215. PubMed ID: 15598502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The production of nitrous oxide by the heme/nonheme diiron center of engineered myoglobins (Fe(B)Mbs) proceeds through a trans-iron-nitrosyl dimer.
    Matsumura H; Hayashi T; Chakraborty S; Lu Y; Moënne-Loccoz P
    J Am Chem Soc; 2014 Feb; 136(6):2420-31. PubMed ID: 24432820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families.
    Pei J; Li W; Kinch LN; Grishin NV
    Protein Sci; 2014 Sep; 23(9):1220-34. PubMed ID: 24931479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates.
    Mahinthichaichan P; Gennis RB; Tajkhorshid E
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):712-724. PubMed ID: 29883591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase.
    Hayashi T; Miner KD; Yeung N; Lin YW; Lu Y; Moënne-Loccoz P
    Biochemistry; 2011 Jul; 50(26):5939-47. PubMed ID: 21634416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese and Cobalt in the Nonheme-Metal-Binding Site of a Biosynthetic Model of Heme-Copper Oxidase Superfamily Confer Oxidase Activity through Redox-Inactive Mechanism.
    Reed JH; Shi Y; Zhu Q; Chakraborty S; Mirts EN; Petrik ID; Bhagi-Damodaran A; Ross M; Moënne-Loccoz P; Zhang Y; Lu Y
    J Am Chem Soc; 2017 Sep; 139(35):12209-12218. PubMed ID: 28768416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioinformatics classifier and database for heme-copper oxygen reductases.
    Sousa FL; Alves RJ; Pereira-Leal JB; Teixeira M; Pereira MM
    PLoS One; 2011 Apr; 6(4):e19117. PubMed ID: 21559461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Engineered Glutamate in Biosynthetic Models of Heme-Copper Oxidases Drives Complete Product Selectivity by Tuning the Hydrogen-Bonding Network.
    Petrik ID; Davydov R; Kahle M; Sandoval B; Dwaraknath S; Ädelroth P; Hoffman B; Lu Y
    Biochemistry; 2021 Feb; 60(4):346-355. PubMed ID: 33464878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The superfamily of heme-copper oxygen reductases: types and evolutionary considerations.
    Sousa FL; Alves RJ; Ribeiro MA; Pereira-Leal JB; Teixeira M; Pereira MM
    Biochim Biophys Acta; 2012 Apr; 1817(4):629-37. PubMed ID: 22001780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan Can Promote Oxygen Reduction to Water in a Biosynthetic Model of Heme Copper Oxidases.
    Ledray AP; Dwaraknath S; Chakarawet K; Sponholtz MR; Merchen C; Van Stappen C; Rao G; Britt RD; Lu Y
    Biochemistry; 2023 Jan; 62(2):388-395. PubMed ID: 36215733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights Into How Heme Reduction Potentials Modulate Enzymatic Activities of a Myoglobin-based Functional Oxidase.
    Bhagi-Damodaran A; Kahle M; Shi Y; Zhang Y; Ädelroth P; Lu Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6622-6626. PubMed ID: 28470988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling.
    Reed CJ; Lam QN; Mirts EN; Lu Y
    Chem Soc Rev; 2021 Mar; 50(4):2486-2539. PubMed ID: 33475096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin.
    Petrik ID; Davydov R; Ross M; Zhao X; Hoffman B; Lu Y
    J Am Chem Soc; 2016 Feb; 138(4):1134-7. PubMed ID: 26716352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.