These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27994254)

  • 41. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2018 Nov; 1859(11):1223-1234. PubMed ID: 30248312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of O
    Blomberg MRA
    Chem Soc Rev; 2020 Oct; 49(20):7301-7330. PubMed ID: 33006348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An electrogenic nitric oxide reductase.
    Al-Attar S; de Vries S
    FEBS Lett; 2015 Jul; 589(16):2050-7. PubMed ID: 26149211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin.
    Lin YW; Yeung N; Gao YG; Miner KD; Tian S; Robinson H; Lu Y
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8581-6. PubMed ID: 20421510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface-Enhanced Infrared Absorption Spectroscopy of Bacterial Nitric Oxide Reductase under Electrochemical Control Using a Vibrational Probe of Carbon Monoxide.
    Kato M; Nakagawa S; Tosha T; Shiro Y; Masuda Y; Nakata K; Yagi I
    J Phys Chem Lett; 2018 Sep; 9(17):5196-5200. PubMed ID: 30141632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison between the nitric oxide reductase family and its aerobic relatives, the cytochrome oxidases.
    de Vries S; Schröder I
    Biochem Soc Trans; 2002 Aug; 30(4):662-7. PubMed ID: 12196159
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binuclear Cu(A) Formation in Biosynthetic Models of Cu(A) in Azurin Proceeds via a Novel Cu(Cys)2His Mononuclear Copper Intermediate.
    Chakraborty S; Polen MJ; Chacón KN; Wilson TD; Yu Y; Reed J; Nilges MJ; Blackburn NJ; Lu Y
    Biochemistry; 2015 Oct; 54(39):6071-81. PubMed ID: 26352296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies.
    Grönberg KL; Watmough NJ; Thomson AJ; Richardson DJ; Field SJ
    J Biol Chem; 2004 Apr; 279(17):17120-5. PubMed ID: 14766741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes.
    Tosha T; Shiro Y
    IUBMB Life; 2013 Mar; 65(3):217-26. PubMed ID: 23378174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaction of carbon monoxide with the reduced active site of bacterial nitric oxide reductase.
    Hendriks JH; Prior L; Baker AR; Thomson AJ; Saraste M; Watmough NJ
    Biochemistry; 2001 Nov; 40(44):13361-9. PubMed ID: 11683646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Introducing a 2-His-1-Glu nonheme iron center into myoglobin confers nitric oxide reductase activity.
    Lin YW; Yeung N; Gao YG; Miner KD; Lei L; Robinson H; Lu Y
    J Am Chem Soc; 2010 Jul; 132(29):9970-2. PubMed ID: 20586490
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene cluster of Rhodothermus marinus high-potential iron-sulfur Protein: oxygen oxidoreductase, a caa(3)-type oxidase belonging to the superfamily of heme-copper oxidases.
    Santana M; Pereira MM; Elias NP; Soares CM; Teixeira M
    J Bacteriol; 2001 Jan; 183(2):687-99. PubMed ID: 11133964
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The respiratory nitric oxide reductase (NorBC) from Paracoccus denitrificans.
    Field SJ; Thorndycroft FH; Matorin AD; Richardson DJ; Watmough NJ
    Methods Enzymol; 2008; 437():79-101. PubMed ID: 18433624
    [TBL] [Abstract][Full Text] [Related]  

  • 55. X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase.
    Silaghi-Dumitrescu R; Kurtz DM; Ljungdahl LG; Lanzilotta WN
    Biochemistry; 2005 May; 44(17):6492-501. PubMed ID: 15850383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spectroscopic and genetic evidence for two heme-Cu-containing oxidases in Rhodobacter sphaeroides.
    Shapleigh JP; Hill JJ; Alben JO; Gennis RB
    J Bacteriol; 1992 Apr; 174(7):2338-43. PubMed ID: 1313003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper-Carbon Bonds in Mechanistic and Structural Probing of Proteins as well as in Situations where Copper is a Catalytic or Receptor Site.
    Lucas HR; Karlin KD
    Met Ions Life Sci; 2009; 6():295-361. PubMed ID: 20877799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geometric and Electronic Structure Contributions to O-O Cleavage and the Resultant Intermediate Generated in Heme-Copper Oxidases.
    Schaefer AW; Roveda AC; Jose A; Solomon EI
    J Am Chem Soc; 2019 Jun; 141(25):10068-10081. PubMed ID: 31146528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase.
    Pinakoulaki E; Varotsis C
    J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular dynamics simulations reveal proton transfer pathways in cytochrome C-dependent nitric oxide reductase.
    Pisliakov AV; Hino T; Shiro Y; Sugita Y
    PLoS Comput Biol; 2012; 8(8):e1002674. PubMed ID: 22956904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.