These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27995029)

  • 1. Thermal-hydraulic analysis of the coil test facility for CFETR.
    Ren Y; Liu X; Li J; Wang Z; Qiu L; Du S; Li G; Gao X
    Springerplus; 2016; 5(1):2052. PubMed ID: 27995029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a 0.5-T/240-mm MgB
    Ling J; Voccio J; Hahn S; Kim Y; Song J; Bascuñán J; Iwasa Y
    IEEE Trans Appl Supercond; 2014 Jun; 24(3):. PubMed ID: 34025088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIT 1.3-GHz LTS/HTS NMR Magnet: Post Quench Analysis and New 800-MHz Insert Design.
    Park D; Bascuñán J; Michael PC; Lee J; Choi YH; Li Y; Hahn S; Iwasa Y
    IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31031553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designs and Tests of Shaking Coils to Reduce Screening Currents Induced in HTS Insert Coils for NMR Magnet.
    Kajikawa K; Gettliffe GV; Chu Y; Miyagi D; Lécrevisse TP; Hahn S; Bascuñán J; Iwasa Y
    IEEE Trans Appl Supercond; 2015 Jun; 25(3):. PubMed ID: 32952375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monofilament MgB
    Ling J; Voccio J; Kim Y; Hahn S; Bascuñán J; Park DK; Iwasa Y
    IEEE Trans Appl Supercond; 2013 Jun; 23(3):. PubMed ID: 32863682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute.
    Park JY; Choi S; Lee BS; Yoon JH; Ok JW; Kim BC; Shin CS; Ahn JK; Won MS
    Rev Sci Instrum; 2014 Feb; 85(2):02A928. PubMed ID: 24593507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in Chinese fusion research based on superconducting tokamak configuration.
    Zheng J; Qin J; Lu K; Xu M; Duan X; Xu G; Hu J; Gong X; Zang Q; Liu Z; Wang L; Ding R; Chen J; Li P; Xue L; Cai L; Song Y
    Innovation (Camb); 2022 Jul; 3(4):100269. PubMed ID: 35815072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A persistent-mode 0.5 T solid-nitrogen-cooled MgB2 magnet for MRI.
    Ling J; Voccio JP; Hahn S; Qu T; Bascuñán J; Iwasa Y
    Supercond Sci Technol; 2017 Feb; 30(2):. PubMed ID: 28966476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.
    Ren Y; Liu X; Gao X
    Springerplus; 2016; 5(1):673. PubMed ID: 27350910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic, Mechanical and Thermal Modeling of Superconducting, Whole-body, Actively Shielded, 3 T MRI Magnets Wound Using MgB
    Majoros M; Sumption MD; Parizh M; Wan F; Rindfleisch MA; Doll D; Tomsic M; Collings EW
    IEEE Trans Appl Supercond; 2022 Jun; 32(4):. PubMed ID: 36245846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the 600 MHz HTS Insert for a 1.3 GHz NMR Magnet.
    Bascuñán J; Hahn S; Park DK; Kim Y; Iwasa Y
    IEEE Trans Appl Supercond; 2012 Jun; 22(3):. PubMed ID: 31171896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current distribution monitoring enables quench and damage detection in superconducting fusion magnets.
    Teyber R; Weiss J; Marchevsky M; Prestemon S; van der Laan D
    Sci Rep; 2022 Dec; 12(1):22503. PubMed ID: 36577760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forced flow cryogenic cooling in fusion devices: A review.
    Vaghela H; Lakhera VJ; Sarkar B
    Heliyon; 2021 Jan; 7(1):e06053. PubMed ID: 33553741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet.
    Hahn S; Kim K; Kim K; Hu X; Painter T; Dixon I; Kim S; Bhattarai KR; Noguchi S; Jaroszynski J; Larbalestier DC
    Nature; 2019 Jun; 570(7762):496-499. PubMed ID: 31189951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of a superconducting magnet for an 18 GHz electron cyclotron resonance ion∕photon source NFRI-ECRIPS.
    You HJ; Jang SW; Jung YH; Lho TH; Lee SJ
    Rev Sci Instrum; 2012 Feb; 83(2):02A326. PubMed ID: 22380173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Watch-sized 12 Tesla all-high-temperature-superconducting magnet.
    Chen PH; Gao C; Alaniva N; Björgvinsdóttir S; Pagonakis IG; Urban MA; Däpp A; Gunzenhauser R; Barnes AB
    J Magn Reson; 2023 Dec; 357():107588. PubMed ID: 37976810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet.
    Michael PC; Park D; Choi YH; Lee J; Li Y; Bascuñán J; Noguchi S; Hahn S; Iwasa Y
    IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31130801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achievement of 1020MHz NMR.
    Hashi K; Ohki S; Matsumoto S; Nishijima G; Goto A; Deguchi K; Yamada K; Noguchi T; Sakai S; Takahashi M; Yanagisawa Y; Iguchi S; Yamazaki T; Maeda H; Tanaka R; Nemoto T; Suematsu H; Miki T; Saito K; Shimizu T
    J Magn Reson; 2015 Jul; 256():30-33. PubMed ID: 25978708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm
    Shen T; Bosque E; Davis D; Jiang J; White M; Zhang K; Higley H; Turqueti M; Huang Y; Miao H; Trociewitz U; Hellstrom E; Parrell J; Hunt A; Gourlay S; Prestemon S; Larbalestier D
    Sci Rep; 2019 Jul; 9(1):10170. PubMed ID: 31308414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An 800-MHz all-REBCO Insert for the 1.3-GHz LTS/HTS NMR Magnet Program-A Progress Report.
    Bascuñán J; Hahn S; Lecrevisse T; Song J; Miyagi D; Iwasa Y
    IEEE Trans Appl Supercond; 2016 Jun; 26(4):. PubMed ID: 31289431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.