These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 27995125)

  • 1. Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring.
    Yousefi N; Tufenkji N
    Front Chem; 2016; 4():46. PubMed ID: 27995125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies.
    Swana KW; Camesano TA; Nagarajan R
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quartz Crystal Microbalances as Tools for Probing Protein-Membrane Interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2019; 2003():31-52. PubMed ID: 31218612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation.
    Zhu X; Wang Z; Zhao A; Huang N; Chen H; Zhou S; Xie X
    Colloids Surf B Biointerfaces; 2014 Apr; 116():459-64. PubMed ID: 24552662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates.
    Cho NJ; Frank CW; Kasemo B; Höök F
    Nat Protoc; 2010 Jun; 5(6):1096-106. PubMed ID: 20539285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz crystal microbalances as tools for probing protein-membrane interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2013; 974():1-21. PubMed ID: 23404269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrodeless QCM-D for lipid bilayer applications.
    Kunze A; Zäch M; Svedhem S; Kasemo B
    Biosens Bioelectron; 2011 Jan; 26(5):1833-8. PubMed ID: 20153163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigating effects of osmolytes on the interactions between nanoparticles and supported lipid bilayer.
    Xia Z; Lau BLT
    J Colloid Interface Sci; 2020 May; 568():1-7. PubMed ID: 32070850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles.
    Yousefi N; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14339-48. PubMed ID: 27211513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the protein corona on the interaction between nanoparticles and lipid bilayers.
    Di Silvio D; Maccarini M; Parker R; Mackie A; Fragneto G; Baldelli Bombelli F
    J Colloid Interface Sci; 2017 Oct; 504():741-750. PubMed ID: 28623699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time QCM-D monitoring of electrostatically driven lipid transfer between two lipid bilayer membranes.
    Wikström A; Svedhem S; Sivignon M; Kasemo B
    J Phys Chem B; 2008 Nov; 112(44):14069-74. PubMed ID: 18850739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Quartz Crystal Microbalance Monitoring of Free Docosahexaenoic Acid Interactions with Supported Lipid Bilayers.
    Flynn KR; Martin LL; Ackland ML; Torriero AA
    Langmuir; 2016 Nov; 32(45):11717-11727. PubMed ID: 27728769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of supported lipid bilayers at surfaces with controlled curvatures: influence of lipid charge.
    Sundh M; Svedhem S; Sutherland DS
    J Phys Chem B; 2011 Jun; 115(24):7838-48. PubMed ID: 21630649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of nanoparticle-lipid membrane interactions using QCM-D.
    Frost R; Svedhem S
    Methods Mol Biol; 2013; 991():127-37. PubMed ID: 23546665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: real-time monitoring by quartz crystal microbalance with dissipation.
    Zhang X; Yang S
    Langmuir; 2011 Mar; 27(6):2528-35. PubMed ID: 21294560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Sensor Coating and Topography on Protein and Nanoparticle Interaction with Supported Lipid Bilayers.
    Yin H; Mensch AC; Lochbaum CA; Foreman-Ortiz IU; Caudill ER; Hamers RJ; Pedersen JA
    Langmuir; 2021 Feb; 37(7):2256-2267. PubMed ID: 33560854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.
    Ferhan AR; Jackman JA; Cho NJ
    Anal Chem; 2016 Dec; 88(24):12524-12531. PubMed ID: 28193076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D): Preparing Functionalized Lipid Layers for the Study of Complex Protein-Ligand Interactions.
    Birchenough HL; Jowitt TA
    Methods Mol Biol; 2021; 2263():183-197. PubMed ID: 33877598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time examination of aminoglycoside activity towards bacterial mimetic membranes using Quartz Crystal Microbalance with Dissipation monitoring (QCM-D).
    Joshi T; Voo ZX; Graham B; Spiccia L; Martin LL
    Biochim Biophys Acta; 2015 Feb; 1848(2):385-91. PubMed ID: 25450807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.