BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27995311)

  • 1. Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions.
    Adlercreutz P
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):513-519. PubMed ID: 27995311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases.
    Bissaro B; Monsan P; Fauré R; O'Donohue MJ
    Biochem J; 2015 Apr; 467(1):17-35. PubMed ID: 25793417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of glycomonomers via biocatalytic methods.
    Adharis A; Loos K
    Methods Enzymol; 2019; 627():215-247. PubMed ID: 31630741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases.
    Gotor V
    Bioorg Med Chem; 1999 Oct; 7(10):2189-97. PubMed ID: 10579525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactosyl transfer catalyzed by thermostable beta-glycosidases from Sulfolobus solfataricus and Pyrococcus furiosus: kinetic studies of the reactions of galactosylated enzyme intermediates with a range of nucleophiles.
    Petzelbauer I; Splechtna B; Nidetzky B
    J Biochem; 2001 Sep; 130(3):341-9. PubMed ID: 11530009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for modulating transglycosylation activity, substrate specificity, and product polymerization degree of engineered transglycosylases.
    Jian X; Li C; Feng X
    Crit Rev Biotechnol; 2023 Dec; 43(8):1284-1298. PubMed ID: 36154438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-catalyzed reactions in organic media: competition and applications.
    Deleuze H; Langrand G; Millet H; Baratti J; Buono G; Triantaphylides C
    Biochim Biophys Acta; 1987 Jan; 911(1):117-20. PubMed ID: 3790594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry.
    Kotik M; Kulik N; Valentová K
    J Agric Food Chem; 2023 Oct; 71(41):14890-14910. PubMed ID: 37800688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein engineering for development of new hydrolytic biocatalysts.
    Widersten M
    Curr Opin Chem Biol; 2014 Aug; 21():42-7. PubMed ID: 24769269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products.
    Bissaro B; Saurel O; Arab-Jaziri F; Saulnier L; Milon A; Tenkanen M; Monsan P; O'Donohue MJ; Fauré R
    Biochim Biophys Acta; 2014 Jan; 1840(1):626-36. PubMed ID: 24140392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Single Hydrogen Bond Controls the Selectivity of Transglycosylation vs Hydrolysis in Family 13 Glycoside Hydrolases.
    Guo Z; Wang L; Su L; Chen S; Xia W; André I; Rovira C; Wang B; Wu J
    J Phys Chem Lett; 2022 Jun; 13(24):5626-5632. PubMed ID: 35704841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the determinants of the transglycosylation/hydrolysis partition in a retaining α-l-arabinofuranosidase.
    Zhao J; Tandrup T; Bissaro B; Barbe S; Poulsen JN; André I; Dumon C; Lo Leggio L; O'Donohue MJ; Fauré R
    N Biotechnol; 2021 May; 62():68-78. PubMed ID: 33524585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Enzyme Design without Structural Knowledge: A Sequence-Based Approach for Efficient Generation of Transglycosylases.
    Teze D; Zhao J; Wiemann M; Kazi ZGA; Lupo R; Zeuner B; Vuillemin M; Rønne ME; Carlström G; Duus JØ; Sanejouand YH; O'Donohue MJ; Nordberg Karlsson E; Fauré R; Stålbrand H; Svensson B
    Chemistry; 2021 Jul; 27(40):10323-10334. PubMed ID: 33914359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanism of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues.
    Viladot JL; de Ramon E; Durany O; Planas A
    Biochemistry; 1998 Aug; 37(32):11332-42. PubMed ID: 9698381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal β-Glycosidase Belonging to Subfamily 4 of Glycoside Hydrolase Family 30 with Transglycosylation Activity.
    Cha JH; Hong M; Cha CJ
    J Agric Food Chem; 2021 Dec; 69(50):15261-15267. PubMed ID: 34879649
    [No Abstract]   [Full Text] [Related]  

  • 16. A Trapped Covalent Intermediate of a Glycoside Hydrolase on the Pathway to Transglycosylation. Insights from Experiments and Quantum Mechanics/Molecular Mechanics Simulations.
    Raich L; Borodkin V; Fang W; Castro-López J; van Aalten DM; Hurtado-Guerrero R; Rovira C
    J Am Chem Soc; 2016 Mar; 138(10):3325-32. PubMed ID: 26859322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycoside phosphorylases: structure, catalytic properties and biotechnological potential.
    Puchart V
    Biotechnol Adv; 2015; 33(2):261-76. PubMed ID: 25687274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GDSL family of serine esterases/lipases.
    Akoh CC; Lee GC; Liaw YC; Huang TH; Shaw JF
    Prog Lipid Res; 2004 Nov; 43(6):534-52. PubMed ID: 15522763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating the Nucleophile of a Glycoside Hydrolase through Site-Specific Incorporation of Fluoroglutamic Acids.
    Kötzler MP; Robinson K; Chen HM; Okon M; McIntosh LP; Withers SG
    J Am Chem Soc; 2018 Jul; 140(26):8268-8276. PubMed ID: 29894173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling lipase enantioselectivity for organic synthesis.
    Berglund P
    Biomol Eng; 2001 Aug; 18(1):13-22. PubMed ID: 11429309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.