These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 27995430)

  • 1. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Med Biol Eng Comput; 2017 Aug; 55(8):1435-1450. PubMed ID: 27995430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Comput Math Methods Med; 2015; 2015():232381. PubMed ID: 26491464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA.
    Mahajan R; Morshed BI
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):158-65. PubMed ID: 24968340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks.
    Sadrawi M; Fan SZ; Abbod MF; Jen KK; Shieh JS
    Biomed Res Int; 2015; 2015():536863. PubMed ID: 26568957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.
    Jiang GJ; Fan SZ; Abbod MF; Huang HH; Lan JY; Tsai FF; Chang HC; Yang YW; Chuang FL; Chiu YF; Jen KK; Wu JF; Shieh JS
    Biomed Res Int; 2015; 2015():343478. PubMed ID: 25738152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time depth of anaesthesia assessment using strong analytical signal transform technique.
    Palendeng ME; Wen P; Li Y
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):723-30. PubMed ID: 25412884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.
    Gu Y; Liang Z; Hagihira S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition.
    Madanu R; Rahman F; Abbod MF; Fan SZ; Shieh JS
    Math Biosci Eng; 2021 Jun; 18(5):5047-5068. PubMed ID: 34517477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Physiol Meas; 2017 Feb; 38(2):116-138. PubMed ID: 28033111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.
    Su C; Liang Z; Li X; Li D; Li Y; Ursino M
    PLoS One; 2016; 11(10):e0164104. PubMed ID: 27723803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring.
    Kreuzer M; Kochs EF; Schneider G; Jordan D
    J Clin Monit Comput; 2014 Dec; 28(6):573-80. PubMed ID: 24442330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivariate multiscale entropy for brain consciousness analysis.
    Ahmed MU; Li L; Cao J; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():810-3. PubMed ID: 22254434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the depth of anesthesia using entropy features and an artificial neural network.
    Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ
    J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denoising depth EEG signals during DBS using filtering and subspace decomposition.
    Hofmanis J; Caspary O; Louis-Dorr V; Ranta R; Maillard L
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2686-95. PubMed ID: 23674415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample entropy analysis for the estimating depth of anaesthesia through human EEG signal at different levels of unconsciousness during surgeries.
    Liu Q; Ma L; Fan SZ; Abbod MF; Shieh JS
    PeerJ; 2018; 6():e4817. PubMed ID: 29844970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ECG contamination of EEG signals: effect on entropy.
    Chakrabarti D; Bansal S
    J Clin Monit Comput; 2016 Feb; 30(1):119-22. PubMed ID: 25900143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-Periodicities Detection Using Phase-Rectified Signal Averaging in EEG Signals as a Depth of Anesthesia Monitor.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1773-1784. PubMed ID: 28391200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of multivariate empirical mode decomposition for seizure detection in EEG signals.
    Ur Rehman N; Xia Y; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1650-3. PubMed ID: 21096140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the performance of empirical mode decomposition via Tsallis entropy: Application to Alzheimer EEG analysis.
    Lazar P; Jayapathy R; Torrents-Barrena J; Mary Linda M; Mol B; Mohanalin J; Puig D
    Biomed Mater Eng; 2018; 29(5):551-566. PubMed ID: 30400071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.