These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 27995509)
1. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Kocoń A; Jurga B Environ Sci Pollut Res Int; 2017 Feb; 24(5):4990-5000. PubMed ID: 27995509 [TBL] [Abstract][Full Text] [Related]
2. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469 [TBL] [Abstract][Full Text] [Related]
3. Remediation of soils on municipal rendering plant territories using Miscanthus × giganteus. Grzegórska A; Czaplicka N; Antonkiewicz J; Rybarczyk P; Baran A; Dobrzyński K; Zabrocki D; Rogala A Environ Sci Pollut Res Int; 2023 Feb; 30(9):22305-22318. PubMed ID: 36287369 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Korzeniowska J; Stanislawska-Glubiak E Environ Sci Pollut Res Int; 2015 Aug; 22(15):11648-57. PubMed ID: 25850746 [TBL] [Abstract][Full Text] [Related]
5. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. Pavel PB; Puschenreiter M; Wenzel WW; Diacu E; Barbu CH Sci Total Environ; 2014 May; 479-480():125-31. PubMed ID: 24561291 [TBL] [Abstract][Full Text] [Related]
6. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Pogrzeba M; Rusinowski S; Krzyżak J Environ Sci Pollut Res Int; 2018 Apr; 25(12):12096-12106. PubMed ID: 29453723 [TBL] [Abstract][Full Text] [Related]
7. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
8. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Antonkiewicz J; Kołodziej B; Bielińska EJ Int J Phytoremediation; 2017 Apr; 19(4):309-318. PubMed ID: 27603091 [TBL] [Abstract][Full Text] [Related]
10. Impact of plant growth regulators and soil properties on Miscanthus x giganteus biomass parameters and uptake of metals in military soils. Nebeská D; Pidlisnyuk V; Stefanovska T; Trögl J; Shapoval P; Popelka J; Černý J; Medkow A; Kvak V; Malinská H Rev Environ Health; 2019 Sep; 34(3):283-291. PubMed ID: 31318698 [TBL] [Abstract][Full Text] [Related]
11. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil. Korzeniowska J; Stanislawska-Glubiak E Environ Sci Pollut Res Int; 2017 Jun; 24(17):14857-14866. PubMed ID: 28477255 [TBL] [Abstract][Full Text] [Related]
12. Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production. Ofori-Agyemang F; Waterlot C; Manu J; Laloge R; Francin R; Papazoglou EG; Alexopoulou E; Sahraoui AL; Tisserant B; Mench M; Burges A; Oustrière N Sci Total Environ; 2024 Feb; 912():169527. PubMed ID: 38135075 [TBL] [Abstract][Full Text] [Related]
13. Potentials of Miscanthus x giganteus for phytostabilization of trace element-contaminated soils: Ex situ experiment. Nsanganwimana F; Al Souki KS; Waterlot C; Douay F; Pelfrêne A; Ridošková A; Louvel B; Pourrut B Ecotoxicol Environ Saf; 2021 May; 214():112125. PubMed ID: 33714138 [TBL] [Abstract][Full Text] [Related]
14. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments. Karer J; Zehetner F; Dunst G; Fessl J; Wagner M; Puschenreiter M; Stapkēviča M; Friesl-Hanl W; Soja G Environ Sci Pollut Res Int; 2018 Jan; 25(3):2506-2516. PubMed ID: 29127635 [TBL] [Abstract][Full Text] [Related]
15. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Mayerová M; Petrová Š; Madaras M; Lipavský J; Šimon T; Vaněk T Environ Sci Pollut Res Int; 2017 Jun; 24(17):14706-14716. PubMed ID: 28456920 [TBL] [Abstract][Full Text] [Related]
16. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
17. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Li Z; Wu L; Luo Y; Christie P Chemosphere; 2018 Mar; 194():432-440. PubMed ID: 29227891 [TBL] [Abstract][Full Text] [Related]
18. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. Rusinowski S; Krzyżak J; Sitko K; Kalaji HM; Jensen E; Pogrzeba M Environ Pollut; 2019 Jul; 250():300-311. PubMed ID: 31003142 [TBL] [Abstract][Full Text] [Related]
19. [Heavy Metal Contamination of Soils and Crops near a Zinc Smelter]. Chen F; Dong ZQ; Wang CC; Wei XH; Hu Y; Zhang LJ Huan Jing Ke Xue; 2017 Oct; 38(10):4360-4369. PubMed ID: 29965222 [TBL] [Abstract][Full Text] [Related]
20. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. Rusinowski S; Krzyżak J; Clifton-Brown J; Jensen E; Mos M; Webster R; Sitko K; Pogrzeba M Environ Pollut; 2019 Sep; 252(Pt B):1377-1387. PubMed ID: 31254895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]