These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27995610)

  • 1. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria.
    Godwin CM; Whitaker EA; Cotner JB
    Ecology; 2017 Mar; 98(3):820-829. PubMed ID: 27995610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometric flexibility in diverse aquatic heterotrophic bacteria is coupled to differences in cellular phosphorus quotas.
    Godwin CM; Cotner JB
    Front Microbiol; 2015; 6():159. PubMed ID: 25774154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Nutrient Imbalances and Temperature on the Biomass Stoichiometry of Freshwater Bacteria.
    Phillips KN; Godwin CM; Cotner JB
    Front Microbiol; 2017; 8():1692. PubMed ID: 28943865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What intrinsic and extrinsic factors explain the stoichiometric diversity of aquatic heterotrophic bacteria?
    Godwin CM; Cotner JB
    ISME J; 2018 Feb; 12(2):598-609. PubMed ID: 29171840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry.
    Godwin CM; Cotner JB
    ISME J; 2015 Oct; 9(10):2324-7. PubMed ID: 25798755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of biomass composition explains microbial growth-stoichiometry relationships.
    Franklin O; Hall EK; Kaiser C; Battin TJ; Richter A
    Am Nat; 2011 Feb; 177(2):E29-42. PubMed ID: 21460549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding stoichiometric constraints on growth using resource use efficiency imbalances.
    Prater C; Phan T; Elser JJ; Jeyasingh PD
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2319022121. PubMed ID: 38683986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria.
    Zimmerman AE; Allison SD; Martiny AC
    Environ Microbiol; 2014 May; 16(5):1398-410. PubMed ID: 24237481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of NH
    Ruan Z; Giordano M
    Plant Cell Environ; 2017 Feb; 40(2):227-236. PubMed ID: 27982443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate.
    Peoples LM; Isanta-Navarro J; Bras B; Hand BK; Rosenzweig F; Elser JJ; Church MJ
    mSystems; 2024 Jul; ():e0077024. PubMed ID: 38980051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency.
    Keiblinger KM; Hall EK; Wanek W; Szukics U; Hämmerle I; Ellersdorfer G; Böck S; Strauss J; Sterflinger K; Richter A; Zechmeister-Boltenstern S
    FEMS Microbiol Ecol; 2010 Sep; 73(3):430-40. PubMed ID: 20550579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of leaf C:N:P stoichiometry to water supply in the desert shrub Zygophyllum xanthoxylum.
    Niu D; Zhang C; Ma P; Fu H; Elser JJ
    Plant Biol (Stuttg); 2019 Jan; 21(1):82-88. PubMed ID: 30102826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometry of Prochlorococcus, Synechococcus, and small eukaryotic populations in the western North Atlantic Ocean.
    Baer SE; Lomas MW; Terpis KX; Mouginot C; Martiny AC
    Environ Microbiol; 2017 Apr; 19(4):1568-1583. PubMed ID: 28139885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature affects stoichiometry and biochemical composition of Escherichia coli.
    Cotner JB; Makino W; Biddanda BA
    Microb Ecol; 2006 Jul; 52(1):26-33. PubMed ID: 16767523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition.
    Scott JT; Cotner JB; Lapara TM
    Front Microbiol; 2012; 3():42. PubMed ID: 22371708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal metabolic regulation along resource stoichiometry gradients.
    Manzoni S; Čapek P; Mooshammer M; Lindahl BD; Richter A; Šantrůčková H
    Ecol Lett; 2017 Sep; 20(9):1182-1191. PubMed ID: 28756629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus.
    Garcia NS; Bonachela JA; Martiny AC
    ISME J; 2016 Nov; 10(11):2715-2724. PubMed ID: 27058506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
    Manning DW; Rosemond AD; Gulis V; Benstead JP; Kominoski JS; Maerz JC
    Ecol Appl; 2016 Sep; 26(6):1745-1757. PubMed ID: 27755690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis.
    Jeyasingh PD; Goos JM; Thompson SK; Godwin CM; Cotner JB
    Front Microbiol; 2017; 8():722. PubMed ID: 28487686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.
    Gulis V; Kuehn KA; Schoettle LN; Leach D; Benstead JP; Rosemond AD
    ISME J; 2017 Dec; 11(12):2729-2739. PubMed ID: 28731471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.