These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27995829)

  • 1. Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.
    Hagmann MJ; Yarotski DA; Mousa MS
    Microsc Microanal; 2017 Apr; 23(2):443-448. PubMed ID: 27995829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser.
    Juan YS; Lin FY
    Opt Express; 2009 Oct; 17(21):18596-605. PubMed ID: 20372590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb.
    Diddams SA; Kirchner M; Fortier T; Braje D; Weiner AM; Hollberg L
    Opt Express; 2009 Mar; 17(5):3331-40. PubMed ID: 19259170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser.
    Wilcox KG; Quarterman AH; Apostolopoulos V; Beere HE; Farrer I; Ritchie DA; Tropper AC
    Opt Express; 2012 Mar; 20(7):7040-5. PubMed ID: 22453384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical generation of a precise microwave frequency comb by harmonic frequency locking.
    Chan SC; Xia GQ; Liu JM
    Opt Lett; 2007 Jul; 32(13):1917-9. PubMed ID: 17603613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser.
    Juan YS; Lin FY
    Opt Lett; 2009 Jun; 34(11):1636-8. PubMed ID: 19488132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced scanning tunneling microscopy: Linear excitation of the junction plasmon.
    Lee J; Perdue SM; Whitmore D; Apkarian VA
    J Chem Phys; 2010 Sep; 133(10):104706. PubMed ID: 20849185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upgrade of a low-temperature scanning tunneling microscope for electron-spin resonance.
    Natterer FD; Patthey F; Bilgeri T; Forrester PR; Weiss N; Brune H
    Rev Sci Instrum; 2019 Jan; 90(1):013706. PubMed ID: 30709206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate.
    Hakobyan S; Wittwer VJ; Brochard P; Gürel K; Schilt S; Mayer AS; Keller U; Südmeyer T
    Opt Express; 2017 Aug; 25(17):20437-20453. PubMed ID: 29041725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical under-sampling by using a broadband optical comb with a high average power.
    Sherman A; Horowitz M; Zach S
    Opt Express; 2014 Jun; 22(13):15502-13. PubMed ID: 24977809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Photon-Induced Tunneling Microscopy.
    Garg M; Martin-Jimenez A; Luo Y; Kern K
    ACS Nano; 2021 Nov; 15(11):18071-18084. PubMed ID: 34723474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repetition-frequency-tunable mode-locked surface emitting semiconductor laser between 2.78 and 7.87 GHz.
    Wilcox KG; Quarterman AH; Beere HE; Ritchie DA; Tropper AC
    Opt Express; 2011 Nov; 19(23):23453-9. PubMed ID: 22109222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser.
    Lo MC; Guzmán R; Ali M; Santos R; Augustin L; Carpintero G
    Opt Lett; 2017 Oct; 42(19):3872-3875. PubMed ID: 28957148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW.
    Pekarek S; Fiebig C; Stumpf MC; Oehler AE; Paschke K; Erbert G; Südmeyer T; Keller U
    Opt Express; 2010 Aug; 18(16):16320-6. PubMed ID: 20721018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gigahertz self-referenceable frequency comb from a semiconductor disk laser.
    Zaugg CA; Klenner A; Mangold M; Mayer AS; Link SM; Emaury F; Golling M; Gini E; Saraceno CJ; Tilma BW; Keller U
    Opt Express; 2014 Jun; 22(13):16445-55. PubMed ID: 24977894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser.
    Zhuang JP; Li XZ; Li SS; Chan SC
    Opt Lett; 2016 Dec; 41(24):5764-5767. PubMed ID: 27973526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel STM-assisted microwave microscope with capacitance and loss imaging capability.
    Imtiaz A; Anlage SM
    Ultramicroscopy; 2003 Apr; 94(3-4):209-16. PubMed ID: 12524191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antenna-based ultrahigh vacuum microwave frequency scanning tunneling microscopy system.
    Giridharagopal R; Zhang J; Kelly KF
    Rev Sci Instrum; 2011 May; 82(5):053710. PubMed ID: 21639510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal.
    Klenner A; Golling M; Keller U
    Opt Express; 2013 Apr; 21(8):10351-7. PubMed ID: 23609745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of arbitrary channel selection utilizing a pulse-injected semiconductor laser with a phase-locked loop.
    Juan YS; Lin FY
    Opt Express; 2011 Jan; 19(2):1057-64. PubMed ID: 21263644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.