These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 27995909)
1. Chirality-driven orbital magnetic moments as a new probe for topological magnetic structures. Dos Santos Dias M; Bouaziz J; Bouhassoune M; Blügel S; Lounis S Nat Commun; 2016 Dec; 7():13613. PubMed ID: 27995909 [TBL] [Abstract][Full Text] [Related]
2. Topological-chiral magnetic interactions driven by emergent orbital magnetism. Grytsiuk S; Hanke JP; Hoffmann M; Bouaziz J; Gomonay O; Bihlmayer G; Lounis S; Mokrousov Y; Blügel S Nat Commun; 2020 Jan; 11(1):511. PubMed ID: 31980610 [TBL] [Abstract][Full Text] [Related]
3. A nontrivial crossover in topological Hall effect regimes. Denisov KS; Rozhansky IV; Averkiev NS; Lähderanta E Sci Rep; 2017 Dec; 7(1):17204. PubMed ID: 29222474 [TBL] [Abstract][Full Text] [Related]
4. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Kurumaji T; Nakajima T; Hirschberger M; Kikkawa A; Yamasaki Y; Sagayama H; Nakao H; Taguchi Y; Arima TH; Tokura Y Science; 2019 Aug; 365(6456):914-918. PubMed ID: 31395744 [TBL] [Abstract][Full Text] [Related]
5. Orbital Magnetization of Quantum Spin Hall Insulator Nanoparticles. Potasz P; Fernández-Rossier J Nano Lett; 2015 Sep; 15(9):5799-803. PubMed ID: 26252612 [TBL] [Abstract][Full Text] [Related]
7. Observation of Topological Hall Effect in a Chemically Complex Alloy. Yu J; Liu Y; Ke Y; Su J; Cao J; Li Z; Sun B; Bai H; Wang W Adv Mater; 2024 Apr; 36(15):e2308415. PubMed ID: 38265890 [TBL] [Abstract][Full Text] [Related]
8. Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions. Nagaosa N; Yu XZ; Tokura Y Philos Trans A Math Phys Eng Sci; 2012 Dec; 370(1981):5806-19. PubMed ID: 23166382 [TBL] [Abstract][Full Text] [Related]
10. The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature. Raju M; Yagil A; Soumyanarayanan A; Tan AKC; Almoalem A; Ma F; Auslaender OM; Panagopoulos C Nat Commun; 2019 Mar; 10(1):696. PubMed ID: 30842413 [TBL] [Abstract][Full Text] [Related]
11. Relation between spin and orbital magnetism in excited states of ferromagnetic materials. Sandratskii LM J Phys Condens Matter; 2014 Oct; 26(42):426001. PubMed ID: 25273348 [TBL] [Abstract][Full Text] [Related]
12. Orbital Origin of the Intrinsic Planar Hall Effect. Wang H; Huang YX; Liu H; Feng X; Zhu J; Wu W; Xiao C; Yang SA Phys Rev Lett; 2024 Feb; 132(5):056301. PubMed ID: 38364160 [TBL] [Abstract][Full Text] [Related]
17. Direct Demonstration of Topological Stability of Magnetic Skyrmions Je SG; Han HS; Kim SK; Montoya SA; Chao W; Hong IS; Fullerton EE; Lee KS; Lee KJ; Im MY; Hong JI ACS Nano; 2020 Mar; 14(3):3251-3258. PubMed ID: 32129978 [TBL] [Abstract][Full Text] [Related]
18. Emergent Topological Hall Effect at a Charge-Transfer Interface. Lim ZS; Li C; Huang Z; Chi X; Zhou J; Zeng S; Omar GJ; Feng YP; Rusydi A; Pennycook SJ; Venkatesan T; Ariando A Small; 2020 Dec; 16(50):e2004683. PubMed ID: 33191619 [TBL] [Abstract][Full Text] [Related]
19. Metamagnetic multiband Hall effect in Ising antiferromagnet ErGa Kurumaji T; Fang S; Ye L; Kitou S; Checkelsky JG Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2318411121. PubMed ID: 38805279 [TBL] [Abstract][Full Text] [Related]
20. Magnon Orbital Nernst Effect in Honeycomb Antiferromagnets without Spin-Orbit Coupling. Go G; An D; Lee HW; Kim SK Nano Lett; 2024 May; 24(20):5968-5974. PubMed ID: 38682941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]