These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27996047)

  • 1. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains.
    Khodayari A; Maranas CD
    Nat Commun; 2016 Dec; 7():13806. PubMed ID: 27996047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data.
    Gopalakrishnan S; Dash S; Maranas C
    Metab Eng; 2020 Sep; 61():197-205. PubMed ID: 32173504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of genome-scale metabolic network models using experimentally measured flux profiles.
    Herrgård MJ; Fong SS; Palsson BØ
    PLoS Comput Biol; 2006 Jul; 2(7):e72. PubMed ID: 16839195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale.
    Hu M; Dinh HV; Shen Y; Suthers PF; Foster CJ; Call CM; Ye X; Pratas J; Fatma Z; Zhao H; Rabinowitz JD; Maranas CD
    Metab Eng; 2023 Mar; 76():1-17. PubMed ID: 36603705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.
    Kim MK; Lane A; Kelley JJ; Lun DS
    PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production.
    Martínez JA; Rodriguez A; Moreno F; Flores N; Lara AR; Ramírez OT; Gosset G; Bolivar F
    BMC Syst Biol; 2018 Nov; 12(1):102. PubMed ID: 30419897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From annotated genomes to metabolic flux models and kinetic parameter fitting.
    Segrè D; Zucker J; Katz J; Lin X; D'haeseleer P; Rindone WP; Kharchenko P; Nguyen DH; Wright MA; Church GM
    OMICS; 2003; 7(3):301-16. PubMed ID: 14583118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Genome-Scale Metabolic Model and Phenome Analysis of the Probiotic
    Kim D; Kim Y; Yoon SH
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672760
    [No Abstract]   [Full Text] [Related]  

  • 13. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism.
    Mannan AA; Toya Y; Shimizu K; McFadden J; Kierzek AM; Rocco A
    PLoS One; 2015; 10(10):e0139507. PubMed ID: 26469081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative fluxome and metabolome analysis for overproduction of succinate in Escherichia coli.
    Taymaz-Nikerel H; De Mey M; Baart GJ; Maertens J; Foulquié-Moreno MR; Charlier D; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2016 Apr; 113(4):817-29. PubMed ID: 26444867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust mutant strain design by pessimistic optimization.
    Apaydin M; Xu L; Zeng B; Qian X
    BMC Genomics; 2017 Oct; 18(Suppl 6):677. PubMed ID: 28984191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns.
    Kaleta C; de Figueiredo LF; Schuster S
    Genome Res; 2009 Oct; 19(10):1872-83. PubMed ID: 19541909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology.
    Paklao T; Suratanee A; Plaimas K
    BMC Bioinformatics; 2023 Dec; 24(1):492. PubMed ID: 38129786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states.
    Hu M; Suthers PF; Maranas CD
    Metab Eng; 2024 Mar; 82():123-133. PubMed ID: 38336004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.