BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27996236)

  • 1. Controlling the Thickness of Thermally Expanded Films of Graphene Oxide.
    Chen X; Li W; Luo D; Huang M; Wu X; Huang Y; Lee SH; Chen X; Ruoff RS
    ACS Nano; 2017 Jan; 11(1):665-674. PubMed ID: 27996236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling pore structure and conductivity in graphene nanosheet films through partial thermal exfoliation.
    Kwon Y; Liu M; Castilho C; Saleeba Z; Hurt R; Külaots I
    Carbon N Y; 2021 Apr; 174():227-239. PubMed ID: 33633411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties.
    Liu J; Notarianni M; Will G; Tiong VT; Wang H; Motta N
    Langmuir; 2013 Oct; 29(43):13307-14. PubMed ID: 24089707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Conductive and Transparent Reduced Graphene Oxide Nanoscale Films via Thermal Conversion of Polymer-Encapsulated Graphene Oxide Sheets.
    Savchak M; Borodinov N; Burtovyy R; Anayee M; Hu K; Ma R; Grant A; Li H; Cutshall DB; Wen Y; Koley G; Harrell WR; Chumanov G; Tsukruk V; Luzinov I
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3975-3985. PubMed ID: 29286620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defects boost graphitization for highly conductive graphene films.
    Zhang Q; Wei Q; Huang K; Liu Z; Ma W; Zhang Z; Zhang Y; Cheng HM; Ren W
    Natl Sci Rev; 2023 Jul; 10(7):nwad147. PubMed ID: 37416318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal expansion behavior of thin films expanding freely on water surface.
    Kim JH; Jang KL; Ahn K; Yoon T; Lee TI; Kim TS
    Sci Rep; 2019 May; 9(1):7071. PubMed ID: 31068646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot-Pressed Super-Elastic Graphene Aerogel with Bidirectional Thermal Conduction Properties as Thermal Interface Materials.
    Lv P; Zhou X; Chen S
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-by-layer assembly of thin films containing exfoliated pristine graphene nanosheets and polyethyleneimine.
    Sham AY; Notley SM
    Langmuir; 2014 Mar; 30(9):2410-8. PubMed ID: 24528297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient preparation of large-area graphene oxide sheets for transparent conductive films.
    Zhao J; Pei S; Ren W; Gao L; Cheng HM
    ACS Nano; 2010 Sep; 4(9):5245-52. PubMed ID: 20815368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.
    Meng X; Pan H; Zhu C; Chen Z; Lu T; Xu D; Li Y; Zhu S
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22611-22622. PubMed ID: 29888597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.
    Wang H; Wei C; Zhu K; Zhang Y; Gong C; Guo J; Zhang J; Yu L; Zhang J
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34456-34466. PubMed ID: 28901733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphite Nanoplatelets from Waste Chicken Feathers.
    Pajarito B; Belarmino AJ; Calimbas RM; Gonzales JR
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrically and thermally conductive free-standing graphene films with two-dimensional copper sheets as the catalyst and bridge.
    Ye H; Chen J; Hu Y; Li Y; Wang Y; Fu XZ; Sun R
    Dalton Trans; 2023 May; 52(17):5486-5495. PubMed ID: 37038930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralight, Ultraflexible, Anisotropic, Highly Thermally Conductive Graphene Aerogel Films.
    Liu Z; Wang Q; Hou L; Liu Y; Li Z
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic thermal expansion behavior of thin films of polymethylsilsesquioxane, a spin-on-glass dielectric for high-performance integrated circuits.
    Oh W; Ree M
    Langmuir; 2004 Aug; 20(16):6932-9. PubMed ID: 15274606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Porous Gold Film Using Graphene Oxide as a Sacrificial Layer.
    Alazzam A; Alamoodi N; Abutayeh M; Stiharu I; Nerguizian V
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31323903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Nitrogen Doping and Pore Generation in Thermo-Insulating Graphene Films via Colloidal Templating.
    Bark H; Lee J; Lim H; Koo HY; Lee W; Lee H
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31617-31624. PubMed ID: 27775330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoelectronic properties of graphene thin films deposited by a Langmuir-Blodgett assembly.
    Kim H; Mattevi C; Kim HJ; Mittal A; Mkhoyan KA; Riman RE; Chhowalla M
    Nanoscale; 2013 Dec; 5(24):12365-74. PubMed ID: 24162721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alucone interlayers to minimize stress caused by thermal expansion mismatch between Al₂O₃ films and Teflon substrates.
    Jen SH; George SM; McLean RS; Carcia PF
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1165-73. PubMed ID: 23272996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.