These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 27996242)
1. Coupled Hydro-Biogeochemical Processes Controlling Cr Reductive Immobilization in Columbia River Hyporheic Zone. Liu Y; Xu F; Liu C Environ Sci Technol; 2017 Feb; 51(3):1508-1517. PubMed ID: 27996242 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water. Ahmed B; Cao B; Mishra B; Boyanov MI; Kemner KM; Fredrickson JK; Beyenal H Water Res; 2012 Sep; 46(13):3989-98. PubMed ID: 22683408 [TBL] [Abstract][Full Text] [Related]
3. Effect of ion exchange on the rate of aerobic microbial oxidation of ammonium in hyporheic zone sediments. Yan A; Liu C; Liu Y; Xu F Environ Sci Pollut Res Int; 2018 Mar; 25(9):8880-8887. PubMed ID: 29330820 [TBL] [Abstract][Full Text] [Related]
4. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840 [TBL] [Abstract][Full Text] [Related]
5. Flow regulation effects on the hydrogeochemistry of the hyporheic zone in boreal rivers. Siergieiev D; Widerlund A; Ingri J; Lundberg A; Öhlander B Sci Total Environ; 2014 Nov; 499():424-36. PubMed ID: 25022722 [TBL] [Abstract][Full Text] [Related]
6. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318 [TBL] [Abstract][Full Text] [Related]
7. Biogeochemical processes and microbial characteristics across groundwater-surface water boundaries of the Hanford Reach of the Columbia River. Moser DP; Fredrickson JK; Geist DR; Arntzen EV; Peacock AD; Li SM; Spadoni T; McKinley JP Environ Sci Technol; 2003 Nov; 37(22):5127-34. PubMed ID: 14655698 [TBL] [Abstract][Full Text] [Related]
8. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river. Cardenas MB; Markowski MS Environ Sci Technol; 2011 Feb; 45(4):1407-11. PubMed ID: 21194211 [TBL] [Abstract][Full Text] [Related]
9. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. Freitas JG; Rivett MO; Roche RS; Durrant Neé Cleverly M; Walker C; Tellam JH Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025 [TBL] [Abstract][Full Text] [Related]
10. Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone. Ma R; Liu C; Greskowiak J; Prommer H; Zachara J; Zheng C J Contam Hydrol; 2014 Jan; 156():27-37. PubMed ID: 24240103 [TBL] [Abstract][Full Text] [Related]
11. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092 [TBL] [Abstract][Full Text] [Related]
12. Grain size tunes microbial community assembly and nitrogen transformation activity under frequent hyporheic exchange: A column experiment. Li Y; Zhu J; Wang L; Gao Y; Zhang W; Zhang H; Niu L Water Res; 2020 Sep; 182():116040. PubMed ID: 32622134 [TBL] [Abstract][Full Text] [Related]
13. Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry. Peter KT; Herzog S; Tian Z; Wu C; McCray JE; Lynch K; Kolodziej EP Water Res; 2019 Mar; 150():140-152. PubMed ID: 30508711 [TBL] [Abstract][Full Text] [Related]
14. Effect of rapidly changing river stage on uranium flux through the hyporheic zone. Fritz BG; Arntzen EV Ground Water; 2007; 45(6):753-60. PubMed ID: 17973753 [TBL] [Abstract][Full Text] [Related]
15. Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors. Graham EB; Stegen JC; Huang M; Chen X; Scheibe TD Sci Total Environ; 2019 Mar; 657():435-445. PubMed ID: 30550907 [TBL] [Abstract][Full Text] [Related]
16. The fate of polar trace organic compounds in the hyporheic zone. Schaper JL; Seher W; Nützmann G; Putschew A; Jekel M; Lewandowski J Water Res; 2018 Sep; 140():158-166. PubMed ID: 29705619 [TBL] [Abstract][Full Text] [Related]
17. Tracking groundwater discharge to a large river using tracers and geophysics. Harrington GA; Gardner WP; Munday TJ Ground Water; 2014; 52(6):837-52. PubMed ID: 24124692 [TBL] [Abstract][Full Text] [Related]
18. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Stegen JC; Johnson T; Fredrickson JK; Wilkins MJ; Konopka AE; Nelson WC; Arntzen EV; Chrisler WB; Chu RK; Fansler SJ; Graham EB; Kennedy DW; Resch CT; Tfaily M; Zachara J Nat Commun; 2018 Feb; 9(1):585. PubMed ID: 29422537 [TBL] [Abstract][Full Text] [Related]
19. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system. Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489 [TBL] [Abstract][Full Text] [Related]
20. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession. Malzone JM; Lowry CS Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]