BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27997129)

  • 1. Alkali Metal CO
    Memon MZ; Zhao X; Sikarwar VS; Vuppaladadiyam AK; Milne SJ; Brown AP; Li J; Zhao M
    Environ Sci Technol; 2017 Jan; 51(1):12-27. PubMed ID: 27997129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.
    Fermoso J; Gil MV; Rubiera F; Chen D
    ChemSusChem; 2014 Nov; 7(11):3063-77. PubMed ID: 25209388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic gasification of biomass (Miscanthus) enhanced by CO
    Zamboni I; Debal M; Matt M; Girods P; Kiennemann A; Rogaume Y; Courson C
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22253-22266. PubMed ID: 26996917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst.
    Broda M; Manovic V; Imtiaz Q; Kierzkowska AM; Anthony EJ; Müller CR
    Environ Sci Technol; 2013 Jun; 47(11):6007-14. PubMed ID: 23675760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Production by Sorption Enhanced Steam Reforming (SESR) of Biomass in a Fluidised-Bed Reactor Using Combined Multifunctional Particles.
    Clough PT; Boot-Handford ME; Zheng L; Zhang Z; Fennell PS
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29883427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of sintering-resistant sorbents for CO2 capture.
    Liu W; Feng B; Wu Y; Wang G; Barry J; da Costa JC
    Environ Sci Technol; 2010 Apr; 44(8):3093-7. PubMed ID: 20205453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving hydrogen-rich gas production from biomass catalytic steam gasification over metal-doping porous biochar.
    Kong G; Liu Q; Ji G; Jia H; Cao T; Zhang X; Han L
    Bioresour Technol; 2023 Nov; 387():129662. PubMed ID: 37573983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.
    Li D; Tamura M; Nakagawa Y; Tomishige K
    Bioresour Technol; 2015 Feb; 178():53-64. PubMed ID: 25455089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production by sorption-enhanced steam reforming of glycerol.
    Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.
    Zhang C; Jun KW; Ha KS; Lee YJ; Kang SC
    Environ Sci Technol; 2014 Jul; 48(14):8251-7. PubMed ID: 24933030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of NiO into the CO
    González A; Martínez-Cruz MA; Alcántar-Vázquez B; Portillo-Vélez NS; Pfeiffer H; Lara-García HA
    Heliyon; 2024 Jan; 10(2):e24645. PubMed ID: 38304793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast and Stable CO
    Cui H; Zhang Q; Hu Y; Peng C; Fang X; Cheng Z; Galvita VV; Zhou Z
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20611-20620. PubMed ID: 29855184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review.
    Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal plasma gasification of organic waste stream coupled with CO
    Sikarwar VS; Peela NR; Vuppaladadiyam AK; Ferreira NL; Mašláni A; Tomar R; Pohořelý M; Meers E; Jeremiáš M
    RSC Adv; 2022 Feb; 12(10):6122-6132. PubMed ID: 35424582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel reforming method for hydrogen production from biomass steam gasification.
    Gao N; Li A; Quan C
    Bioresour Technol; 2009 Sep; 100(18):4271-7. PubMed ID: 19395255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Dec; 101(23):9279-86. PubMed ID: 20655199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.
    Park HJ; Park SH; Sohn JM; Park J; Jeon JK; Kim SS; Park YK
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S101-3. PubMed ID: 19369069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.