These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chaperoning Against Amyloid Aggregation: Monitoring In Vitro and In Vivo. Vignesh R; Aradhyam GK Methods Mol Biol; 2019; 1929():135-154. PubMed ID: 30710272 [TBL] [Abstract][Full Text] [Related]
3. Calnuc binds to Alzheimer's beta-amyloid precursor protein and affects its biogenesis. Lin P; Li F; Zhang YW; Huang H; Tong G; Farquhar MG; Xu H J Neurochem; 2007 Mar; 100(6):1505-14. PubMed ID: 17348862 [TBL] [Abstract][Full Text] [Related]
4. Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization. Bonito-Oliva A; Barbash S; Sakmar TP; Graham WV Sci Rep; 2017 Feb; 7():42880. PubMed ID: 28220836 [TBL] [Abstract][Full Text] [Related]
5. Ion-binding properties of Calnuc, Ca2+ versus Mg2+--Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein. Kanuru M; Samuel JJ; Balivada LM; Aradhyam GK FEBS J; 2009 May; 276(9):2529-46. PubMed ID: 19302560 [TBL] [Abstract][Full Text] [Related]
6. Serine protease activity of calnuc: regulation by Zn2+ and G proteins. Kanuru M; Raman R; Aradhyam GK J Biol Chem; 2013 Jan; 288(3):1762-73. PubMed ID: 23195954 [TBL] [Abstract][Full Text] [Related]
7. MAP2 prevents protein aggregation and facilitates reactivation of unfolded enzymes. Sarkar T; Mitra G; Gupta S; Manna T; Poddar A; Panda D; Das KP; Bhattacharyya B Eur J Biochem; 2004 Apr; 271(8):1488-96. PubMed ID: 15066174 [TBL] [Abstract][Full Text] [Related]
8. G Protein binding sites on Calnuc (nucleobindin 1) and NUCB2 (nucleobindin 2) define a new class of G(alpha)i-regulatory motifs. Garcia-Marcos M; Kietrsunthorn PS; Wang H; Ghosh P; Farquhar MG J Biol Chem; 2011 Aug; 286(32):28138-49. PubMed ID: 21653697 [TBL] [Abstract][Full Text] [Related]
9. The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. Lin P; Le-Niculescu H; Hofmeister R; McCaffery JM; Jin M; Hennemann H; McQuistan T; De Vries L; Farquhar MG J Cell Biol; 1998 Jun; 141(7):1515-27. PubMed ID: 9647645 [TBL] [Abstract][Full Text] [Related]
10. How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Huang L; Liu X; Cheng B; Huang K Arch Biochem Biophys; 2015 Feb; 568():46-55. PubMed ID: 25615529 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of protein homeostasis in health, aging and disease. Goloubinoff P Swiss Med Wkly; 2016; 146():w14306. PubMed ID: 27045704 [TBL] [Abstract][Full Text] [Related]
12. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. Rekas A; Adda CG; Andrew Aquilina J; Barnham KJ; Sunde M; Galatis D; Williamson NA; Masters CL; Anders RF; Robinson CV; Cappai R; Carver JA J Mol Biol; 2004 Jul; 340(5):1167-83. PubMed ID: 15236975 [TBL] [Abstract][Full Text] [Related]
13. Process, Outcomes and Possible Elimination of Aggregation with Special Reference to Heme Proteins; Likely Remediations of Proteinopathies. Furkan M; Khan RH Curr Protein Pept Sci; 2020; 21(6):573-583. PubMed ID: 32013844 [TBL] [Abstract][Full Text] [Related]
14. Calnuc, an EF-hand Ca(2+) binding protein, specifically interacts with the C-terminal alpha5-helix of G(alpha)i3. Lin P; Fischer T; Weiss T; Farquhar MG Proc Natl Acad Sci U S A; 2000 Jan; 97(2):674-9. PubMed ID: 10639138 [TBL] [Abstract][Full Text] [Related]
15. Chaperone-like activity revealed in the matricellular protein SPARC. Emerson RO; Sage EH; Ghosh JG; Clark JI J Cell Biochem; 2006 Jul; 98(4):701-5. PubMed ID: 16598771 [TBL] [Abstract][Full Text] [Related]
16. Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Salahuddin P; Fatima MT; Abdelhameed AS; Nusrat S; Khan RH Eur J Med Chem; 2016 May; 114():41-58. PubMed ID: 26974374 [TBL] [Abstract][Full Text] [Related]
17. The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: a potential role for defective chaperone biology in Type 2 diabetes. Chien V; Aitken JF; Zhang S; Buchanan CM; Hickey A; Brittain T; Cooper GJ; Loomes KM Biochem J; 2010 Nov; 432(1):113-21. PubMed ID: 20735358 [TBL] [Abstract][Full Text] [Related]
18. Protein Misfolding Diseases. Hartl FU Annu Rev Biochem; 2017 Jun; 86():21-26. PubMed ID: 28441058 [TBL] [Abstract][Full Text] [Related]
19. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Chiti F; Dobson CM Annu Rev Biochem; 2017 Jun; 86():27-68. PubMed ID: 28498720 [TBL] [Abstract][Full Text] [Related]