These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27997169)

  • 1. Rapid, Accurate, Precise, and Reliable Relative Free Energy Prediction Using Ensemble Based Thermodynamic Integration.
    Bhati AP; Wan S; Wright DW; Coveney PV
    J Chem Theory Comput; 2017 Jan; 13(1):210-222. PubMed ID: 27997169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Scale Study of Ligand-Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols.
    Bhati AP; Coveney PV
    J Chem Theory Comput; 2022 Apr; 18(4):2687-2702. PubMed ID: 35293737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics.
    Raman EP; Paul TJ; Hayes RL; Brooks CL
    J Chem Theory Comput; 2020 Dec; 16(12):7895-7914. PubMed ID: 33201701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic integration to predict host-guest binding affinities.
    Lawrenz M; Wereszczynski J; Ortiz-Sánchez JM; Nichols SE; McCammon JA
    J Comput Aided Mol Des; 2012 May; 26(5):569-76. PubMed ID: 22350568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Equilibrium and Nonequilibrium Approaches for Relative Binding Free Energy Predictions.
    Wan S; Bhati AP; Coveney PV
    J Chem Theory Comput; 2023 Nov; 19(21):7846-7860. PubMed ID: 37862058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.
    Simões IC; Costa IP; Coimbra JT; Ramos MJ; Fernandes PA
    J Chem Inf Model; 2017 Jan; 57(1):60-72. PubMed ID: 27936711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Develop and test a solvent accessible surface area-based model in conformational entropy calculations.
    Wang J; Hou T
    J Chem Inf Model; 2012 May; 52(5):1199-212. PubMed ID: 22497310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute binding free energies for octa-acids and guests in SAMPL5 : Evaluating binding free energies for octa-acid and guest complexes in the SAMPL5 blind challenge.
    Tofoleanu F; Lee J; Pickard Iv FC; König G; Huang J; Baek M; Seok C; Brooks BR
    J Comput Aided Mol Des; 2017 Jan; 31(1):107-118. PubMed ID: 27696242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations?
    Hao D; He X; Ji B; Zhang S; Wang J
    J Chem Inf Model; 2020 Dec; 60(12):6624-6633. PubMed ID: 33213150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method.
    Yin J; Henriksen NM; Slochower DR; Gilson MK
    J Comput Aided Mol Des; 2017 Jan; 31(1):133-145. PubMed ID: 27638809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.
    Yu HS; Deng Y; Wu Y; Sindhikara D; Rask AR; Kimura T; Abel R; Wang L
    J Chem Theory Comput; 2017 Dec; 13(12):6290-6300. PubMed ID: 29120625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.
    Wang C; Nguyen PH; Pham K; Huynh D; Le TB; Wang H; Ren P; Luo R
    J Comput Chem; 2016 Oct; 37(27):2436-46. PubMed ID: 27510546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, accurate, precise and reproducible ligand-protein binding free energy prediction.
    Wan S; Bhati AP; Zasada SJ; Coveney PV
    Interface Focus; 2020 Dec; 10(6):20200007. PubMed ID: 33178418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding energy calculations for hevein-carbohydrate interactions using expanded ensemble molecular dynamics simulations.
    Koppisetty CA; Frank M; Lyubartsev AP; Nyholm PG
    J Comput Aided Mol Des; 2015 Jan; 29(1):13-21. PubMed ID: 25432318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting binding affinities of host-guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations.
    König G; Brooks BR
    J Comput Aided Mol Des; 2012 May; 26(5):543-50. PubMed ID: 22198474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
    Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R
    J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble-Based Replica Exchange Alchemical Free Energy Methods: The Effect of Protein Mutations on Inhibitor Binding.
    Bhati AP; Wan S; Coveney PV
    J Chem Theory Comput; 2019 Feb; 15(2):1265-1277. PubMed ID: 30592603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and Reliable Binding Affinity Prediction of Bromodomain Inhibitors: A Computational Study.
    Wan S; Bhati AP; Zasada SJ; Wall I; Green D; Bamborough P; Coveney PV
    J Chem Theory Comput; 2017 Feb; 13(2):784-795. PubMed ID: 28005370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.