These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 27997338)
1. The EB66® cell line as a valuable cell substrate for MVA-based vaccines production. Léon A; David AL; Madeline B; Guianvarc'h L; Dureau E; Champion-Arnaud P; Hebben M; Huss T; Chatrenet B; Schwamborn K Vaccine; 2016 Nov; 34(48):5878-5885. PubMed ID: 27997338 [TBL] [Abstract][Full Text] [Related]
2. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine]. Volz A; Fux R; Langenmayer MC; Sutter G Berl Munch Tierarztl Wochenschr; 2015; 128(11-12):464-72. PubMed ID: 26697713 [TBL] [Abstract][Full Text] [Related]
3. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. Blanchard TJ; Alcami A; Andrea P; Smith GL J Gen Virol; 1998 May; 79 ( Pt 5)():1159-67. PubMed ID: 9603331 [TBL] [Abstract][Full Text] [Related]
5. Differences and similarities in viral life cycle progression and host cell physiology after infection of human dendritic cells with modified vaccinia virus Ankara and vaccinia virus. Chahroudi A; Garber DA; Reeves P; Liu L; Kalman D; Feinberg MB J Virol; 2006 Sep; 80(17):8469-81. PubMed ID: 16912297 [TBL] [Abstract][Full Text] [Related]
6. Modified vaccinia Ankara strains with identical coding sequences actually represent complex mixtures of viruses that determine the biological properties of each strain. Suter M; Meisinger-Henschel C; Tzatzaris M; Hülsemann V; Lukassen S; Wulff NH; Hausmann J; Howley P; Chaplin P Vaccine; 2009 Dec; 27(52):7442-50. PubMed ID: 19539582 [TBL] [Abstract][Full Text] [Related]
7. Protective efficacy of Modified Vaccinia virus Ankara in preclinical studies. Volz A; Sutter G Vaccine; 2013 Sep; 31(39):4235-40. PubMed ID: 23523402 [TBL] [Abstract][Full Text] [Related]
8. Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Carroll MW; Moss B Virology; 1997 Nov; 238(2):198-211. PubMed ID: 9400593 [TBL] [Abstract][Full Text] [Related]
9. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Nikolay A; Léon A; Schwamborn K; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2018 Oct; 102(20):8725-8737. PubMed ID: 30091043 [TBL] [Abstract][Full Text] [Related]
10. A Deleted Deletion Site in a New Vector Strain and Exceptional Genomic Stability of Plaque-Purified Modified Vaccinia Ankara (MVA). Jordan I; Horn D; Thiele K; Haag L; Fiddeke K; Sandig V Virol Sin; 2020 Apr; 35(2):212-226. PubMed ID: 31833037 [TBL] [Abstract][Full Text] [Related]
11. Introduction of the six major genomic deletions of modified vaccinia virus Ankara (MVA) into the parental vaccinia virus is not sufficient to reproduce an MVA-like phenotype in cell culture and in mice. Meisinger-Henschel C; Späth M; Lukassen S; Wolferstätter M; Kachelriess H; Baur K; Dirmeier U; Wagner M; Chaplin P; Suter M; Hausmann J J Virol; 2010 Oct; 84(19):9907-19. PubMed ID: 20668072 [TBL] [Abstract][Full Text] [Related]
12. SPI-1 is a missing host-range factor required for replication of the attenuated modified vaccinia Ankara (MVA) vaccine vector in human cells. Liu R; Mendez-Rios JD; Peng C; Xiao W; Weisberg AS; Wyatt LS; Moss B PLoS Pathog; 2019 May; 15(5):e1007710. PubMed ID: 31145755 [TBL] [Abstract][Full Text] [Related]
13. Repair of a previously uncharacterized second host-range gene contributes to full replication of modified vaccinia virus Ankara (MVA) in human cells. Peng C; Moss B Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3759-3767. PubMed ID: 32019881 [TBL] [Abstract][Full Text] [Related]
14. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants. Melamed S; Wyatt LS; Kastenmayer RJ; Moss B Vaccine; 2013 Sep; 31(41):4569-77. PubMed ID: 23928462 [TBL] [Abstract][Full Text] [Related]
15. Generation and Production of Modified Vaccinia Virus Ankara (MVA) as a Vaccine Vector. Pavot V; Sebastian S; Turner AV; Matthews J; Gilbert SC Methods Mol Biol; 2017; 1581():97-119. PubMed ID: 28374245 [TBL] [Abstract][Full Text] [Related]
16. Tracking Modified Vaccinia Virus Ankara in the Chicken Embryo: In Vivo Tropism and Pathogenesis of Egg Infections. Langenmayer MC; Lülf-Averhoff AT; Adam-Neumair S; Sutter G; Volz A Viruses; 2018 Aug; 10(9):. PubMed ID: 30149505 [TBL] [Abstract][Full Text] [Related]
17. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis. Ramezanpour B; Pronker ES; Kreijtz JH; Osterhaus AD; Claassen E Vaccine; 2015 Aug; 33(35):4349-58. PubMed ID: 26048779 [TBL] [Abstract][Full Text] [Related]
18. Investigation of IRES Insertion into the Genome of Recombinant MVA as a Translation Enhancer in the Context of Transcript Decapping. Alharbi NK; Chinnakannan SK; Gilbert SC; Draper SJ PLoS One; 2015; 10(5):e0127978. PubMed ID: 26011541 [TBL] [Abstract][Full Text] [Related]
19. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara. Jordan I; Lohr V; Genzel Y; Reichl U; Sandig V Microorganisms; 2013 Nov; 1(1):100-121. PubMed ID: 27694766 [TBL] [Abstract][Full Text] [Related]
20. High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system. Vázquez-Ramírez D; Jordan I; Sandig V; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2019 Apr; 103(7):3025-3035. PubMed ID: 30796494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]