BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

679 related articles for article (PubMed ID: 27997540)

  • 1. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.
    Li Y; Buijs-Gladdines JG; Canté-Barrett K; Stubbs AP; Vroegindeweij EM; Smits WK; van Marion R; Dinjens WN; Horstmann M; Kuiper RP; Buijsman RC; Zaman GJ; van der Spek PJ; Pieters R; Meijerink JP
    PLoS Med; 2016 Dec; 13(12):e1002200. PubMed ID: 27997540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance.
    van der Zwet JCG; Buijs-Gladdines JGCAM; Cordo' V; Debets DO; Smits WK; Chen Z; Dylus J; Zaman GJR; Altelaar M; Oshima K; Bornhauser B; Bourquin JP; Cools J; Ferrando AA; Vormoor J; Pieters R; Vormoor B; Meijerink JPP
    Leukemia; 2021 Dec; 35(12):3394-3405. PubMed ID: 34007050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia.
    Canté-Barrett K; Spijkers-Hagelstein JA; Buijs-Gladdines JG; Uitdehaag JC; Smits WK; van der Zwet J; Buijsman RC; Zaman GJ; Pieters R; Meijerink JP
    Leukemia; 2016 Sep; 30(9):1832-43. PubMed ID: 27174491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.
    Hales EC; Taub JW; Matherly LH
    Cell Signal; 2014 Jan; 26(1):149-61. PubMed ID: 24140475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.
    Zenatti PP; Ribeiro D; Li W; Zuurbier L; Silva MC; Paganin M; Tritapoe J; Hixon JA; Silveira AB; Cardoso BA; Sarmento LM; Correia N; Toribio ML; Kobarg J; Horstmann M; Pieters R; Brandalise SR; Ferrando AA; Meijerink JP; Durum SK; Yunes JA; Barata JT
    Nat Genet; 2011 Sep; 43(10):932-9. PubMed ID: 21892159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Glucocorticoid Resistance in Pediatric T-cell Acute Lymphoblastic Leukemia by Increasing BIM Expression with the PI3K/mTOR Inhibitor BEZ235.
    Hall CP; Reynolds CP; Kang MH
    Clin Cancer Res; 2016 Feb; 22(3):621-32. PubMed ID: 26080839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma.
    Silva A; Almeida ARM; Cachucho A; Neto JL; Demeyer S; de Matos M; Hogan T; Li Y; Meijerink J; Cools J; Grosso AR; Seddon B; Barata JT
    Blood; 2021 Sep; 138(12):1040-1052. PubMed ID: 33970999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell profiling of pediatric T-cell acute lymphoblastic leukemia: Impact of PTEN exon 7 mutation on PI3K/Akt and JAK-STAT signaling pathways.
    Bonaccorso P; Bugarin C; Buracchi C; Fazio G; Biondi A; Lo Nigro L; Gaipa G
    Cytometry B Clin Cytom; 2020 Nov; 98(6):491-503. PubMed ID: 32479694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy.
    Sengupta TK; Leclerc GM; Hsieh-Kinser TT; Leclerc GJ; Singh I; Barredo JC
    Mol Cancer; 2007 Jul; 6():46. PubMed ID: 17623090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in gamma-actin and tubulin-targeted drug resistance in childhood leukemia.
    Verrills NM; Po'uha ST; Liu ML; Liaw TY; Larsen MR; Ivery MT; Marshall GM; Gunning PW; Kavallaris M
    J Natl Cancer Inst; 2006 Oct; 98(19):1363-74. PubMed ID: 17018783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting steroid resistance in T-cell acute lymphoblastic leukemia.
    De Smedt R; Morscio J; Goossens S; Van Vlierberghe P
    Blood Rev; 2019 Nov; 38():100591. PubMed ID: 31353059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia.
    Oshima K; Khiabanian H; da Silva-Almeida AC; Tzoneva G; Abate F; Ambesi-Impiombato A; Sanchez-Martin M; Carpenter Z; Penson A; Perez-Garcia A; Eckert C; Nicolas C; Balbin M; Sulis ML; Kato M; Koh K; Paganin M; Basso G; Gastier-Foster JM; Devidas M; Loh ML; Kirschner-Schwabe R; Palomero T; Rabadan R; Ferrando AA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11306-11311. PubMed ID: 27655895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.
    McCubrey JA; Steelman LS; Abrams SL; Lee JT; Chang F; Bertrand FE; Navolanic PM; Terrian DM; Franklin RA; D'Assoro AB; Salisbury JL; Mazzarino MC; Stivala F; Libra M
    Adv Enzyme Regul; 2006; 46():249-79. PubMed ID: 16854453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia.
    Ribeiro D; Melão A; Barata JT
    Adv Biol Regul; 2013 May; 53(2):211-22. PubMed ID: 23234870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.
    Vicente C; Schwab C; Broux M; Geerdens E; Degryse S; Demeyer S; Lahortiga I; Elliott A; Chilton L; La Starza R; Mecucci C; Vandenberghe P; Goulden N; Vora A; Moorman AV; Soulier J; Harrison CJ; Clappier E; Cools J
    Haematologica; 2015 Oct; 100(10):1301-10. PubMed ID: 26206799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.
    McCubrey JA; Steelman LS; Chappell WH; Abrams SL; Wong EW; Chang F; Lehmann B; Terrian DM; Milella M; Tafuri A; Stivala F; Libra M; Basecke J; Evangelisti C; Martelli AM; Franklin RA
    Biochim Biophys Acta; 2007 Aug; 1773(8):1263-84. PubMed ID: 17126425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Mar; 32(3):788-800. PubMed ID: 28852199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STAT5 does not drive steroid resistance in T-cell acute lymphoblastic leukemia despite the activation of
    Van der Zwet JCG; Cordo' V; Buijs-Gladdines JGCAM; Hagelaar R; Smits WK; Vroegindeweij E; Graus LTM; Poort V; Nulle M; Pieters R; Meijerink JPP
    Haematologica; 2023 Mar; 108(3):732-746. PubMed ID: 35734930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.
    Gianfelici V; Chiaretti S; Demeyer S; Di Giacomo F; Messina M; La Starza R; Peragine N; Paoloni F; Geerdens E; Pierini V; Elia L; Mancini M; De Propris MS; Apicella V; Gaidano G; Testi AM; Vitale A; Vignetti M; Mecucci C; Guarini A; Cools J; Foà R
    Haematologica; 2016 Aug; 101(8):941-50. PubMed ID: 27151993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation-sequencing of recurrent childhood high hyperdiploid acute lymphoblastic leukemia reveals mutations typically associated with high risk patients.
    Chen C; Bartenhagen C; Gombert M; Okpanyi V; Binder V; Röttgers S; Bradtke J; Teigler-Schlegel A; Harbott J; Ginzel S; Thiele R; Husemann P; Krell PF; Borkhardt A; Dugas M; Hu J; Fischer U
    Leuk Res; 2015 Sep; 39(9):990-1001. PubMed ID: 26189108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.