BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27997673)

  • 21. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of microprocessor-controlled prosthetic knees on self-reported mobility, quality of life, and psychological states in patients with transfemoral amputations.
    Şen Eİ; Aydın T; Buğdaycı D; Kesiktaş FN
    Acta Orthop Traumatol Turc; 2020 Sep; 54(5):502-506. PubMed ID: 33155559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing the lower limb joint biomechanics of the Power Knee, C-Leg and Rheo Knee during ramp and stair ambulation.
    Kestur S; Zhou S; O'Sullivan G; Young A; Herrin K
    J Biomech; 2024 Jun; 171():112201. PubMed ID: 38936310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical performance and self-report outcomes associated with use of passive, adaptive, and active prosthetic knees in persons with unilateral, transfemoral amputation: Randomized crossover trial.
    Hafner BJ; Askew RL
    J Rehabil Res Dev; 2015; 52(6):677-700. PubMed ID: 26560243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mobility and satisfaction with a microprocessor-controlled knee in moderately active amputees: A multi-centric randomized crossover trial.
    Lansade C; Vicaut E; Paysant J; Ménager D; Cristina MC; Braatz F; Domayer S; Pérennou D; Chiesa G
    Ann Phys Rehabil Med; 2018 Sep; 61(5):278-285. PubMed ID: 29753888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey.
    Seymour R; Engbretson B; Kott K; Ordway N; Brooks G; Crannell J; Hickernell E; Wheeler K
    Prosthet Orthot Int; 2007 Mar; 31(1):51-61. PubMed ID: 17365885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; McCrady SK; Padgett DJ; Joyner MJ
    Arch Phys Med Rehabil; 2008 Jul; 89(7):1380-5. PubMed ID: 18586142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The utility of the single-subject method for comparison of temporal-spatial gait changes between a microprocessor and non-microprocessor prosthetic knees.
    Howard CL; Wallace C; Perry B; Stokic DS
    Prosthet Orthot Int; 2020 Jun; 44(3):133-144. PubMed ID: 32186241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Economic benefits of microprocessor controlled prosthetic knees: a modeling study.
    Chen C; Hanson M; Chaturvedi R; Mattke S; Hillestad R; Liu HH
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):62. PubMed ID: 30255802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microprocessor prosthetic knees.
    Berry D
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):91-113, vii. PubMed ID: 16517347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis.
    Hahn A; Bueschges S; Prager M; Kannenberg A
    Disabil Rehabil; 2022 Dec; 44(24):7349-7367. PubMed ID: 34694952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking.
    Möller S; Rusaw D; Hagberg K; Ramstrand N
    Prosthet Orthot Int; 2019 Jun; 43(3):257-265. PubMed ID: 30375285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobility analysis of amputees (MAAT 3): Matching individuals based on comorbid health reveals improved function for above-knee prosthesis users with microprocessor knee technology.
    Wurdeman SR; Stevens PM; Campbell JH
    Assist Technol; 2020 Sep; 32(5):236-242. PubMed ID: 30592436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instrumented Four Square Step Test in Adults with Transfemoral Amputation: Test-Retest Reliability and Discriminant Validity between Two Types of Microprocessor Knees.
    Gouelle A; Highsmith MJ
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32847127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review.
    Theeven PJ; Hemmen B; Brink PR; Smeets RJ; Seelen HA
    BMC Musculoskelet Disord; 2013 Nov; 14():333. PubMed ID: 24279314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can microprocessor knees reduce the disparity in trips and falls risks between above and below knee prosthesis users?
    McGrath M; Gray LA; Rek B; Davies KC; Savage Z; McLean J; Stenson A; Zahedi S
    PLoS One; 2022; 17(9):e0271315. PubMed ID: 36054087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees.
    Kaufman KR; Bernhardt KA; Symms K
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():116-122. PubMed ID: 30077128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.