BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27997715)

  • 1. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide.
    Li CY; Chen XL; Zhang D; Wang P; Sheng Q; Peng M; Xie BB; Qin QL; Li PY; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Xun LY; Chen Y; Zhang YZ
    Mol Microbiol; 2017 Mar; 103(6):992-1003. PubMed ID: 27997715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase.
    Chen Y; Patel NA; Crombie A; Scrivens JH; Murrell JC
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17791-6. PubMed ID: 22006322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Flavin-Containing Monooxygenases for Conversion of Trimethylamine in Salmon Protein Hydrolysates.
    Goris M; Puntervoll P; Rojo D; Claussen J; Larsen Ø; Garcia-Moyano A; Almendral D; Barbas C; Ferrer M; Bjerga GEK
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 32978141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Mechanistic Insights Into Dimethylsulfoxide Formation Through Dimethylsulfide Oxidation.
    Wang XJ; Zhang N; Teng ZJ; Wang P; Zhang WP; Chen XL; Zhang YZ; Chen Y; Fu HH; Li CY
    Front Microbiol; 2021; 12():735793. PubMed ID: 34630359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling.
    Lidbury ID; Murrell JC; Chen Y
    ISME J; 2015 Mar; 9(3):760-9. PubMed ID: 25148480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimethylamine N-oxygenation and N-demethylation in rat liver microsomes.
    Gut I; Conney AH
    Biochem Pharmacol; 1993 Jul; 46(2):239-44. PubMed ID: 8347145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3.
    Li CY; Chen XL; Shao X; Wei TD; Wang P; Xie BB; Qin QL; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Zhang YZ
    J Bacteriol; 2015 Nov; 197(21):3378-87. PubMed ID: 26283766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation mechanism of N61S mutant of human FMO3 towards trimethylamine.
    Gao C; Catucci G; Castrignanò S; Gilardi G; Sadeghi SJ
    Sci Rep; 2017 Nov; 7(1):14668. PubMed ID: 29116146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis and turnover of trimethylamine oxide in the teleost cod, Gadus morhua.
    Agústsson I; Strøm AR
    J Biol Chem; 1981 Aug; 256(15):8045-9. PubMed ID: 7263638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the reductive and oxidative half-reactions of a flavin-dependent monooxygenase using stopped-flow spectrophotometry.
    Romero E; Robinson R; Sobrado P
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease.
    Fennema D; Phillips IR; Shephard EA
    Drug Metab Dispos; 2016 Nov; 44(11):1839-1850. PubMed ID: 27190056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The FAD-containing monooxygenase-catalyzed N-oxidation and demethylation of trimethylamine in rat liver microsomes.
    Gut I; Conney AH
    Drug Metabol Drug Interact; 1991; 9(3-4):201-8. PubMed ID: 1824076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase.
    Alfieri A; Malito E; Orru R; Fraaije MW; Mattevi A
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6572-7. PubMed ID: 18443301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Flavin-Containing Monooxygenase Genotype, Mouse Strain, and Gender on Trimethylamine
    Veeravalli S; Karu K; Scott F; Fennema D; Phillips IR; Shephard EA
    Drug Metab Dispos; 2018 Jan; 46(1):20-25. PubMed ID: 29070510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Goose FMO3 gene cloning, tissue expression profiling, polymorphism detection and association analysis with trimethylamine level in the egg yolk.
    Zhong H; Luo Y; Sun J; Wang C; Wang QG; Gao GL; Zhang KS; Li Q; Wang HW; Li J; Chen MJ; Wang YM; Zhao XZ
    Gene; 2017 Oct; 632():25-35. PubMed ID: 28844670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disclosure of the metabolic retroversion of trimethylamine N-oxide in humans: a pharmacogenetic approach.
    Al-Waiz M; Ayesh R; Mitchell SC; Idle JR; Smith RL
    Clin Pharmacol Ther; 1987 Dec; 42(6):608-12. PubMed ID: 3690938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human flavin-containing monooxygenase 1 and its long-sought hydroperoxyflavin intermediate.
    Cheropkina H; Catucci G; Marucco A; Fenoglio I; Gilardi G; Sadeghi SJ
    Biochem Pharmacol; 2021 Nov; 193():114763. PubMed ID: 34509493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-oxidation of trimethylamine in a Jordanian population.
    Hadidi HF; Cholerton S; Atkinson S; Irshaid YM; Rawashdeh NM; Idle JR
    Br J Clin Pharmacol; 1995 Feb; 39(2):179-81. PubMed ID: 7742158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.