BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27997715)

  • 21. Electrochemical sensing of trimethylamine based on polypyrrole-flavin-containing monooxygenase (FMO3) and ferrocene as redox probe for evaluation of fish freshness.
    Bourigua S; El Ichi S; Korri-Youssoufi H; Maaref A; Dzyadevych S; Jaffrezic Renault N
    Biosens Bioelectron; 2011 Oct; 28(1):105-11. PubMed ID: 21802279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trimethylamine, a gut bacteria metabolite and air pollutant, increases blood pressure and markers of kidney damage including proteinuria and KIM-1 in rats.
    Maksymiuk KM; Szudzik M; Gawryś-Kopczyńska M; Onyszkiewicz M; Samborowska E; Mogilnicka I; Ufnal M
    J Transl Med; 2022 Oct; 20(1):470. PubMed ID: 36243862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trimethylamine N-oxidation in Turkish women with bacterial vaginosis.
    Sardas S; Akyol D; Green RL; Mellon T; Gökmen O; Cholerton S
    Pharmacogenetics; 1996 Oct; 6(5):459-63. PubMed ID: 8946478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The suncus (Suncus murinus) shows poor metabolic phenotype for trimethylamine N-oxygenation.
    Mushiroda T; Yokoi T; Takahara E; Nagata O; Kato H; Kamataki T
    Toxicol Appl Pharmacol; 2000 Jan; 162(1):44-8. PubMed ID: 10631126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CntA oxygenase substrate profile comparison and oxygen dependency of TMA production in Providencia rettgeri.
    Kalnins G; Sevostjanovs E; Hartmane D; Grinberga S; Tars K
    J Basic Microbiol; 2018 Jan; 58(1):52-59. PubMed ID: 29110324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle.
    Lidbury I; Kröber E; Zhang Z; Zhu Y; Murrell JC; Chen Y; Schäfer H
    Environ Microbiol; 2016 Sep; 18(8):2754-66. PubMed ID: 27114231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased Thermostability of an Engineered Flavin-Containing Monooxygenase to Remediate Trimethylamine in Fish Protein Hydrolysates.
    Goris M; Cea-Rama I; Puntervoll P; Ree R; Almendral D; Sanz-Aparicio J; Ferrer M; Bjerga GEK
    Appl Environ Microbiol; 2023 Jun; 89(6):e0039023. PubMed ID: 37222584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes of flavin-containing monooxygenases and trimethylamine-N-oxide may be involved in the promotion of non-alcoholic fatty liver disease by intestinal microbiota metabolite trimethylamine.
    Shi C; Pei M; Wang Y; Chen Q; Cao P; Zhang L; Guo J; Deng W; Wang L; Li X; Gong Z
    Biochem Biophys Res Commun; 2022 Feb; 594():1-7. PubMed ID: 35065293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of trimethylamine to trimethylamine
    Qin QL; Wang ZB; Su HN; Chen XL; Miao J; Wang XJ; Li CY; Zhang XY; Li PY; Wang M; Fang J; Lidbury I; Zhang W; Zhang XH; Yang GP; Chen Y; Zhang YZ
    Sci Adv; 2021 Mar; 7(13):. PubMed ID: 33771875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis.
    Robinson RM; Rodriguez PJ; Sobrado P
    Arch Biochem Biophys; 2014 May; 550-551():58-66. PubMed ID: 24769337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Metabolite Trimethylamine-N-Oxide is an Emergent Biomarker of Human Health.
    Chhibber-Goel J; Singhal V; Parakh N; Bhargava B; Sharma A
    Curr Med Chem; 2017 Nov; 24(36):3942-3953. PubMed ID: 27573063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detoxification of Trimethylamine N-Oxide by the Mitochondrial Amidoxime Reducing Component mARC.
    Schneider J; Girreser U; Havemeyer A; Bittner F; Clement B
    Chem Res Toxicol; 2018 Jun; 31(6):447-453. PubMed ID: 29856598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trimethylamine: metabolic, pharmacokinetic and safety aspects.
    Bain MA; Fornasini G; Evans AM
    Curr Drug Metab; 2005 Jun; 6(3):227-40. PubMed ID: 15975041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trimethylamine and trimethylamine oxide levels in normal women and women with bacterial vaginosis reflect a local metabolism in vaginal secretion as compared to urine.
    Wolrath H; Ståhlbom B; Hallén A; Forsum U
    APMIS; 2005; 113(7-8):513-6. PubMed ID: 16086821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial reduction of trimethylamine oxide.
    Barrett EL; Kwan HS
    Annu Rev Microbiol; 1985; 39():131-49. PubMed ID: 3904597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of action of a flavin-containing monooxygenase.
    Eswaramoorthy S; Bonanno JB; Burley SK; Swaminathan S
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9832-7. PubMed ID: 16777962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways.
    Liffourrena AS; Salvano MA; Lucchesi GI
    Arch Microbiol; 2010 Jun; 192(6):471-6. PubMed ID: 20437165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of Lactic Acid Bacteria Eliminating Trimethylamine (TMA) for Application to Fishery Processing.
    Mohri S; Kanauchi M
    Methods Mol Biol; 2019; 1887():109-117. PubMed ID: 30506253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors.
    Petriello MC; Hoffman JB; Sunkara M; Wahlang B; Perkins JT; Morris AJ; Hennig B
    J Nutr Biochem; 2016 Jul; 33():145-53. PubMed ID: 27155921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.