These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27997715)

  • 41. Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA.
    Dolphin CT; Riley JH; Smith RL; Shephard EA; Phillips IR
    Genomics; 1997 Dec; 46(2):260-7. PubMed ID: 9417913
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional characterization of genetic variants of human FMO3 associated with trimethylaminuria.
    Yeung CK; Adman ET; Rettie AE
    Arch Biochem Biophys; 2007 Aug; 464(2):251-9. PubMed ID: 17531949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase.
    Johnson SB; Li H; Valentino H; Sobrado P
    Biochemistry; 2024 Jun; 63(11):1445-1459. PubMed ID: 38779817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolism and excretion of methylamines in rats.
    Smith JL; Wishnok JS; Deen WM
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):296-308. PubMed ID: 8171437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species.
    Dos Santos JP; Iobbi-Nivol C; Couillault C; Giordano G; Méjean V
    J Mol Biol; 1998 Nov; 284(2):421-33. PubMed ID: 9813127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pharmacokinetics of trimethylamine in rats, including the effects of a synthetic diet.
    Nnane IP; Damani LA
    Xenobiotica; 2001 Oct; 31(10):749-55. PubMed ID: 11695853
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trimethylaminuria (fish odor syndrome): genotype characterization among Portuguese patients.
    Ferreira F; Esteves S; Almeida LS; Gaspar A; da Costa CD; Janeiro P; Bandeira A; Martins E; Teles EL; Garcia P; Azevedo L; Vilarinho L
    Gene; 2013 Sep; 527(1):366-70. PubMed ID: 23791655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic Variant in Flavin-Containing Monooxygenase 3 Alters Lipid Metabolism in Laying Hens in a Diet-Specific Manner.
    Wang J; Long C; Zhang H; Zhang Y; Wang H; Yue H; Wang X; Wu S; Qi G
    Int J Biol Sci; 2016; 12(11):1382-1393. PubMed ID: 27877090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of biosynthesis of trimethylamine oxide from choline in the teleost tilapia, Oreochromis niloticus, under freshwater conditions.
    Niizeki N; Daikoku T; Hirata T; El-Shourbagy I; Song X; Sakaguchi M
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Mar; 131(3):371-86. PubMed ID: 11959019
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.
    Shirey C; Badieyan S; Sobrado P
    J Biol Chem; 2013 Nov; 288(45):32440-32448. PubMed ID: 24072704
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal conversion of trimethylamine-N-oxide to trimethylamine and dimethylamine in squids.
    Lin JK; Hurng DC
    Food Chem Toxicol; 1985 Jun; 23(6):579-83. PubMed ID: 4040104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular cloning, sequencing, and expression in Escherichia coli of mouse flavin-containing monooxygenase 3 (FMO3): comparison with the human isoform.
    Falls JG; Cherrington NJ; Clements KM; Philpot RM; Levi PE; Rose RL; Hodgson E
    Arch Biochem Biophys; 1997 Nov; 347(1):9-18. PubMed ID: 9344459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota.
    Zhu Y; Jameson E; Crosatti M; Schäfer H; Rajakumar K; Bugg TD; Chen Y
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4268-73. PubMed ID: 24591617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequencing, expression, and characterization of cDNA expressed flavin-containing monooxygenase 2 from mouse.
    Karoly ED; Rose RL
    J Biochem Mol Toxicol; 2001; 15(6):300-8. PubMed ID: 11835629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Active site variants provide insight into the nature of conformational changes that accompany the cyclohexanone monooxygenase catalytic cycle.
    Fordwour OB; Wolthers KR
    Arch Biochem Biophys; 2018 Sep; 654():85-96. PubMed ID: 30030997
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maintenance and accumulation of trimethylamine oxide by winter skate (Leucoraja ocellata): reliance on low whole animal losses rather than synthesis.
    Treberg JR; Driedzic WR
    Am J Physiol Regul Integr Comp Physiol; 2006 Dec; 291(6):R1790-8. PubMed ID: 16873558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Renal N-oxidation of trimethylamine in the chicken during tubular excretion.
    Acara M; Camiolo S; Rennick B
    Drug Metab Dispos; 1977; 5(1):82-90. PubMed ID: 13980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease.
    Zeisel SH; Warrier M
    Annu Rev Nutr; 2017 Aug; 37():157-181. PubMed ID: 28715991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stop codon mutations in the flavin-containing monooxygenase 3 (FMO3) gene responsible for trimethylaminuria in a Japanese population.
    Yamazaki H; Fujita H; Gunji T; Zhang J; Kamataki T; Cashman JR; Shimizu M
    Mol Genet Metab; 2007 Jan; 90(1):58-63. PubMed ID: 16996766
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.
    Bortolotti A; Sánchez-Azqueta A; Maya CM; Velázquez-Campoy A; Hermoso JA; Medina M; Cortez N
    Biochim Biophys Acta; 2014 Jan; 1837(1):33-43. PubMed ID: 24016470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.