These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 27997720)
1. Prediction of chemical composition and peroxide value in unground pet foods by near-infrared spectroscopy. De Marchi M; Righi F; Meneghesso M; Manfrin D; Ricci R J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):337-342. PubMed ID: 27997720 [TBL] [Abstract][Full Text] [Related]
2. Prediction of digestible energy value of extruded dog food: comparison of methods. Hervera M; Baucells MD; Torre C; Buj A; Castrillo C J Anim Physiol Anim Nutr (Berl); 2008 Jun; 92(3):253-9. PubMed ID: 18477305 [TBL] [Abstract][Full Text] [Related]
3. Energy evaluation of extruded compound foods for dogs by near-infrared spectroscopy. Castrillo C; Baucells M; Vicente F; Muñoz F; Andueza D J Anim Physiol Anim Nutr (Berl); 2005; 89(3-6):194-8. PubMed ID: 15787994 [TBL] [Abstract][Full Text] [Related]
4. Nutritional evaluation of commercial dry dog foods by near infrared reflectance spectroscopy. Alomar D; Hodgkinson S; Abarzúa D; Fuchslocher R; Alvarado C; Rosales E J Anim Physiol Anim Nutr (Berl); 2006 Jun; 90(5-6):223-9. PubMed ID: 16684143 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the guaranteed analysis with the measured nutrient composition of commercial pet foods. Hill RC; Choate CJ; Scott KC; Molenberghs G J Am Vet Med Assoc; 2009 Feb; 234(3):347-51. PubMed ID: 19210254 [TBL] [Abstract][Full Text] [Related]
6. Use of near-infrared spectroscopy to predict energy content of commercial dog food. Hervera M; Castrillo C; Albanell E; Baucells MD J Anim Sci; 2012 Dec; 90(12):4401-7. PubMed ID: 23100585 [TBL] [Abstract][Full Text] [Related]
7. Rapid prediction of the chemical composition of pet food using a benchtop and handheld near-infrared spectrometer. Fan Y; Liao J; Zhou Q; Liu Y; Che L; Tang J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124916. PubMed ID: 39096679 [TBL] [Abstract][Full Text] [Related]
8. Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. Mentink RL; Hoffman PC; Bauman LM J Dairy Sci; 2006 Jun; 89(6):2320-6. PubMed ID: 16702299 [TBL] [Abstract][Full Text] [Related]
9. Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy. Ohlsson C; Houmøller LP; Weisbjerg MR; Lund P; Hvelplund T J Anim Physiol Anim Nutr (Berl); 2007 Dec; 91(11-12):498-507. PubMed ID: 17988354 [TBL] [Abstract][Full Text] [Related]
10. Hot topic: application of support vector machine method in prediction of alfalfa protein fractions by near infrared reflectance spectroscopy. Nie Z; Han J; Liu T; Liu X J Dairy Sci; 2008 Jun; 91(6):2361-9. PubMed ID: 18487658 [TBL] [Abstract][Full Text] [Related]
11. Handheld NIRS sensors for routine compound feed quality control: Real time analysis and field monitoring. Modroño S; Soldado A; Martínez-Fernández A; de la Roza-Delgado B Talanta; 2017 Jan; 162():597-603. PubMed ID: 27837877 [TBL] [Abstract][Full Text] [Related]
12. Raw mechanically separated chicken meat and salmon protein hydrolysate as protein sources in extruded dog food: effect on protein and amino acid digestibility. Tjernsbekk MT; Tauson AH; Kraugerud OF; Ahlstrøm Ø J Anim Physiol Anim Nutr (Berl); 2017 Oct; 101(5):e323-e331. PubMed ID: 28045202 [TBL] [Abstract][Full Text] [Related]
13. Chemical characteristics and mineral composition of quinoa by near-infrared spectroscopy. González Martín MI; Wells Moncada G; Fischer S; Escuredo O J Sci Food Agric; 2014 Mar; 94(5):876-81. PubMed ID: 23904243 [TBL] [Abstract][Full Text] [Related]
14. [Analysis and estimate of corn CNCPS component by near infrared reflectance (NIR) spectroscopy]. Yang F; Xie CW; Liu DS; Yu P; Li ZY Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):348-52. PubMed ID: 20384122 [TBL] [Abstract][Full Text] [Related]
15. [Application and prospect of near infrared reflectance spectroscopy in forage analysis]. Ren XZ; Guo HR; Jia YS; Ge GT; Wang K Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):635-40. PubMed ID: 19455789 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Mineral Composition in Commercial Extruded Dry Dog Food by Near-Infrared Reflectance Spectroscopy. Goi A; Manuelian CL; Currò S; Marchi M Animals (Basel); 2019 Sep; 9(9):. PubMed ID: 31480585 [TBL] [Abstract][Full Text] [Related]
17. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
18. Near-infrared reflectance spectroscopy and multivariate calibration techniques applied to modelling the crude protein, fibre and fat content in rapeseed meal. Daszykowski M; Wrobel MS; Czarnik-Matusewicz H; Walczak B Analyst; 2008 Nov; 133(11):1523-31. PubMed ID: 18936829 [TBL] [Abstract][Full Text] [Related]
19. [Quality prediction of alfalfa hay using Fourier transform near infrared reflectance spectroscopy]. Nie ZD; Han JG; Yu Z; Zhang LD; Li JH; Zhong Y; Liu FY Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1308-11. PubMed ID: 17944401 [TBL] [Abstract][Full Text] [Related]
20. Use of near infrared spectroscopy for estimating meat chemical composition, quality traits and fatty acid content from cattle fed sunflower or flaxseed. Prieto N; López-Campos O; Aalhus JL; Dugan ME; Juárez M; Uttaro B Meat Sci; 2014 Oct; 98(2):279-88. PubMed ID: 24976561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]